Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,375 papers

The role of family and computer-mediated communication in adolescent loneliness.

  • Lindsay Favotto‎ et al.
  • PloS one‎
  • 2019‎

Adolescence is a developmental phase in which feelings of loneliness often increase. It is also a time period during which computer-mediated communication (CMC) is frequently used by youth to communicate with their peers. Strong family relationships protect youth from experiencing a wide range of adversities and mental health problems, including loneliness, and yet use of CMC to contact peers may leave adolescents feeling disconnected and lonely while also limiting the amount of time they spend with their family. This study examines the association between CMC and feelings of loneliness among Canadian youth, with family communication explored as an effect modifier. The study base was the Canadian 2013-2014 Health Behaviour in School-aged Children study used in a cross-sectional analysis (N = 30117; grades 6-10). Random-effects multilevel Poisson regression methods were used to quantify risks for adolescent loneliness among daily vs. non-daily users of verbal CMC (e.g., Skype, phone calls), text/instant messaging and social media CMC with friends. Effect modification was tested via the inclusion of modelled interaction terms. Family communication quality moderated the relationship between daily CMC use and loneliness among Canadian youth. Among youth experiencing high relative quality of family communication, daily use of verbal and social media CMC to contact friends was positively associated with reports of loneliness, compared to non-daily users. Findings suggest that family communication must remain central in societal discussions of youth loneliness, mental health and use of CMC.


Analysing Intercellular Communication in Astrocytic Networks Using "Astral".

  • Egor Dzyubenko‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2021‎

Astrocytic networks are critically involved in regulating the activity of neuronal networks. However, a comprehensive and ready-to-use data analysis tool for investigating functional interactions between the astrocytes is missing. We developed the novel software package named "Astral" to analyse intercellular communication in astrocytic networks based on live-cell calcium imaging. Our method for analysing calcium imaging data does not require the assignment of regions of interest. The package contains two applications: the core processing pipeline for detecting and quantifying Ca++ events, and the auxiliary visualization tool for controlling data quality. Our method allows for the network-wide quantification of Ca++ events and the analysis of their intercellular propagation. In a set of proof-of-concept experiments, we examined Ca++ events in flat monolayers of primary astrocytes and confirmed that inter-astrocytic interactions depend on the permeability of gap junctions and connexin hemichannels. The Astral tool is particularly useful for studying astrocyte-neuronal interactions on the network level. We demonstrate that compared with purely astrocytic cultures, spontaneous generation of Ca++ events in astrocytes that were co-cultivated with neurons was significantly increased. Interestingly, the increased astrocytic Ca++ activity after long-term co-cultivation with neurons was driven by the enhanced formation of gap junctions and connexin hemichannels but was not affected by silencing neuronal activity. Our data indicate the necessity for systematic investigation of astrocyte-neuronal interactions at the network level. For this purpose, the Astral software offers a powerful tool for processing and quantifying calcium imaging data.


Variations in power of opinion leaders in online communication networks.

  • Mohsin Adalat‎ et al.
  • Royal Society open science‎
  • 2018‎

Online social media has completely transformed how we communicate with each other. While online discussion platforms are available in the form of applications and websites, an emergent outcome of this transformation is the phenomenon of 'opinion leaders'. A number of previous studies have been presented to identify opinion leaders in online discussion networks. In particular, Feng (2016 Comput. Hum. Behav. 54, 43-53. (doi:10.1016/j.chb.2015.07.052)) has identified five different types of central users besides outlining their communication patterns in an online communication network. However, the presented work focuses on a limited time span. The question remains as to whether similar communication patterns exist that will stand the test of time over longer periods. Here, we present a critical analysis of the Feng framework both for short-term as well as for longer periods. Additionally, for validation, we take another case study presented by Udanor et al. (2016 Program 50, 481-507. (doi:10.1108/PROG-02-2016-0011)) to further understand these dynamics. Results indicate that not all Feng-based central users may be identifiable in the longer term. Conversation starter and influencers were noted as opinion leaders in the network. These users play an important role as information sources in long-term discussions. Whereas network builder and active engager help in connecting otherwise sparse communities. Furthermore, we discuss the changing positions of opinion leaders and their power to keep isolates interested in an online discussion network.


Energy Spectral Behaviors of Communication Networks of Open-Source Communities.

  • Jianmei Yang‎ et al.
  • PloS one‎
  • 2015‎

Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations.


Visualization, documentation, analysis, and communication of large-scale gene regulatory networks.

  • William J R Longabaugh‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on software tools for building GRN models, and so there is a need for custom tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for building GRN models. We also outline our future development plans, and give some examples of current applications of BioTapestry.


A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2.

  • Konstantina Karathanou‎ et al.
  • Journal of structural biology‎
  • 2020‎

Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.


Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone.

  • Gabrielle Stetz‎ et al.
  • PloS one‎
  • 2017‎

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies-from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies.


Tabletop molecular communication: text messages through chemical signals.

  • Nariman Farsad‎ et al.
  • PloS one‎
  • 2013‎

In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling - a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems.


Communication and wiring in the cortical connectome.

  • Julian M L Budd‎ et al.
  • Frontiers in neuroanatomy‎
  • 2012‎

In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns.


Multiscale Computer Modeling of Spreading Depolarization in Brain Slices.

  • Craig Kelley‎ et al.
  • eNeuro‎
  • 2022‎

Spreading depolarization (SD) is a slow-moving wave of neuronal depolarization accompanied by a breakdown of ion concentration homeostasis, followed by long periods of neuronal silence (spreading depression), and is associated with several neurologic conditions. We developed multiscale (ions to tissue slice) computer models of SD in brain slices using the NEURON simulator: 36,000 neurons (two voltage-gated ion channels; three leak channels; three ion exchangers/pumps) in the extracellular space (ECS) of a slice (1 mm sides, varying thicknesses) with ion (K+, Cl-, Na+) and O2 diffusion and equilibration with a surrounding bath. Glia and neurons cleared K+ from the ECS via Na+/K+ pumps. SD propagated through the slices at realistic speeds of 2-4 mm/min, which increased by as much as 50% in models incorporating the effects of hypoxia or propionate. In both cases, the speedup was mediated principally by ECS shrinkage. Our model allows us to make testable predictions, including the following: (1) SD can be inhibited by enlarging ECS volume; (2) SD velocity will be greater in areas with greater neuronal density, total neuronal volume, or larger/more dendrites; (3) SD is all-or-none: initiating K+ bolus properties have little impact on SD speed; (4) Slice thickness influences SD because of relative hypoxia in the slice core, exacerbated by SD in a pathologic cycle; and (5) SD and high neuronal spike rates will be observed in the core of the slice. Cells in the periphery of the slice near an oxygenated bath will resist SD.


An enhanced probabilistic LDA for multi-class brain computer interface.

  • Peng Xu‎ et al.
  • PloS one‎
  • 2011‎

There is a growing interest in the study of signal processing and machine learning methods, which may make the brain computer interface (BCI) a new communication channel. A variety of classification methods have been utilized to convert the brain information into control commands. However, most of the methods only produce uncalibrated values and uncertain results.


Stability from structure: metabolic networks are unlike other biological networks.

  • P van Nes‎ et al.
  • EURASIP journal on bioinformatics & systems biology‎
  • 2009‎

In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks.


The geospatial characteristics of a social movement communication network.

  • Michael D Conover‎ et al.
  • PloS one‎
  • 2013‎

Social movements rely in large measure on networked communication technologies to organize and disseminate information relating to the movements' objectives. In this work we seek to understand how the goals and needs of a protest movement are reflected in the geographic patterns of its communication network, and how these patterns differ from those of stable political communication. To this end, we examine an online communication network reconstructed from over 600,000 tweets from a thirty-six week period covering the birth and maturation of the American anticapitalist movement, Occupy Wall Street. We find that, compared to a network of stable domestic political communication, the Occupy Wall Street network exhibits higher levels of locality and a hub and spoke structure, in which the majority of non-local attention is allocated to high-profile locations such as New York, California, and Washington D.C. Moreover, we observe that information flows across state boundaries are more likely to contain framing language and references to the media, while communication among individuals in the same state is more likely to reference protest action and specific places and times. Tying these results to social movement theory, we propose that these features reflect the movement's efforts to mobilize resources at the local level and to develop narrative frames that reinforce collective purpose at the national level.


Multi-class machine classification of suicide-related communication on Twitter.

  • Pete Burnap‎ et al.
  • Online social networks and media‎
  • 2017‎

The World Wide Web, and online social networks in particular, have increased connectivity between people such that information can spread to millions of people in a matter of minutes. This form of online collective contagion has provided many benefits to society, such as providing reassurance and emergency management in the immediate aftermath of natural disasters. However, it also poses a potential risk to vulnerable Web users who receive this information and could subsequently come to harm. One example of this would be the spread of suicidal ideation in online social networks, about which concerns have been raised. In this paper we report the results of a number of machine classifiers built with the aim of classifying text relating to suicide on Twitter. The classifier distinguishes between the more worrying content, such as suicidal ideation, and other suicide-related topics such as reporting of a suicide, memorial, campaigning and support. It also aims to identify flippant references to suicide. We built a set of baseline classifiers using lexical, structural, emotive and psychological features extracted from Twitter posts. We then improved on the baseline classifiers by building an ensemble classifier using the Rotation Forest algorithm and a Maximum Probability voting classification decision method, based on the outcome of base classifiers. This achieved an F-measure of 0.728 overall (for 7 classes, including suicidal ideation) and 0.69 for the suicidal ideation class. We summarise the results by reflecting on the most significant predictive principle components of the suicidal ideation class to provide insight into the language used on Twitter to express suicidal ideation. Finally, we perform a 12-month case study of suicide-related posts where we further evaluate the classification approach - showing a sustained classification performance and providing anonymous insights into the trends and demographic profile of Twitter users posting content of this type.


Dominating biological networks.

  • Tijana Milenković‎ et al.
  • PloS one‎
  • 2011‎

Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC)" genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.


Deterministic Propagation Modeling for Intelligent Vehicle Communication in Smart Cities.

  • Fausto Granda‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

Vehicular Ad Hoc Networks (VANETs) are envisaged to be a critical building block of Smart Cities and Intelligent Transportation System (ITS) where applications for pollution, congestion reduction, vehicle mobility improvement, accident prevention and safer roads are some of the VANETs expected benefits towards Intelligent Vehicle Communications. Although there is a significant research effort in Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication radio channel characterization, the use of a deterministic approach as a complement of theoretical and empirical models is required to understand more accurately the propagation phenomena in urban environments. In this work, a deterministic computational tool based on an in-house 3D Ray-Launching algorithm is used to represent and analyze large-scale and small-scale urban radio propagation phenomena, including vehicle movement effects on each of the multipath components. In addition, network parameters such as throughput, packet loss and jitter, have been obtained by means of a set of experimental measurements for different V2I and V2V links. Results show the impact of factors such as distance, frequency, location of antenna transmitters (TX), obstacles and vehicle speed. These results are useful for radio-planning Wireless Sensor Networks (WSNs) designers and deployment of urban Road Side Units (RSUs).


Ten simple rules to create biological network figures for communication.

  • G Elisabeta Marai‎ et al.
  • PLoS computational biology‎
  • 2019‎

Biological network figures are ubiquitous in the biology and medical literature. On the one hand, a good network figure can quickly provide information about the nature and degree of interactions between items and enable inferences about the reason for those interactions. On the other hand, good network figures are difficult to create. In this paper, we outline 10 simple rules for creating biological network figures for communication, from choosing layouts, to applying color or other channels to show attributes, to the use of layering and separation. These rules are accompanied by illustrative examples. We also provide a concise set of references and additional resources for each rule.


Emergence of physiological oscillation frequencies in a computer model of neocortex.

  • Samuel A Neymotin‎ et al.
  • Frontiers in computational neuroscience‎
  • 2011‎

Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using nine columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. We tuned the network to achieve realistic cell firing rates and to avoid population spikes. A physiological frequency spectrum appeared as an emergent property, displaying dominant frequencies that were not present in the inputs or in the intrinsic or activated frequencies of any of the cell groups. We monitored spectral changes while using minimal dynamical perturbation as a methodology through gradual introduction of hubs into individual layers. We found that hubs in layer 2/3 excitatory cells had the greatest influence on overall network activity, suggesting that this subpopulation was a primary generator of theta/beta strength in the network. Similarly, layer 2/3 interneurons appeared largely responsible for gamma activation through preferential attenuation of the rest of the spectrum. The network showed evidence of frequency homeostasis: increased activation of supragranular layers increased firing rates in the network without altering the spectral profile, and alteration in synaptic delays did not significantly shift spectral peaks. Direct comparison of the power spectra with experimentally recorded local field potentials from prefrontal cortex of awake rat showed substantial similarities, including comparable patterns of cross-frequency coupling.


A Secure Communication System for Constrained IoT Devices-Experiences and Recommendations.

  • Michał Goworko‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

The Internet of Things networks connect a large number of devices and can be used for various purposes. IoT systems collect and process vast amounts of often sensitive data. Information security should be the key feature of an IoT network. In this paper, we present the IoT-Crypto-secure communication system for the Internet of Things. It addresses IoT features, such as constrained abilities of devices, needs to reduce the volume of the transmitted data and be compatible with the Internet. IoT-Crypto introduces an innovative, lightweight certificate format and trust model based on real-world business relations. It also specifies secure communication protocol, which uses underlying encrypted DTLS connection. This paper presents IoT-Crypto in the context of comparable solutions, discusses its distinctive features and implementation details. Results of tests and experiments performed in the IoT-Crypto network confirm that it works correctly and securely. Test network was also used to ascertain the suitability of encoding standards and BLE IPSP profile for the IoT. Directions of future work were discussed based on those results.


COFE-Net: An ensemble strategy for Computer-Aided Detection for COVID-19.

  • Avinandan Banerjee‎ et al.
  • Measurement : journal of the International Measurement Confederation‎
  • 2022‎

Biomedical images contain a large volume of sensor measurements, which can reveal the descriptors of the disease under investigation. Computer-based analysis of such measurements helps detect the disease, and thereby swiftly aid medical professionals to choose adequate therapy. In this paper, we propose a robust deep learning ensemble framework known as COVID Fuzzy Ensemble Network, or COFE-Net. This strategy is proposed for the task of COVID-19 screening from chest X-rays (CXR) and CT Scans, as a part of Computer-Aided Detection (CADe) for medical practitioners. We leverage the strategy of Transfer Learning for Convolutional Neural Networks (CNNs) widely adopted in recent literature, and further propose an efficient ensemble network for their combination. The principles of fuzzy logic have been leveraged to combine the measured decision scores generated by three state-of-the-art CNNs - Inception V3, Inception ResNet V2 and DenseNet 201 - through the Choquet fuzzy integral. Experimental results support the efficacy of our approach over empirical ensembling, as the fuzzy ensembling strategy for biomedical measurement consists of dynamic refactoring of the classifier ensemble weights on the fly, based upon the confidence scores for coalitions of inputs. This is the chief advantage of our biomedical measurement strategy over others as other methods do not adjust to the multiple generated measurements dynamically unlike ours.Impressive results on multiple datasets demonstrate the effectiveness of the proposed method. The source code of our proposed method is made available at: https://github.com/theavicaster/covid-cade-ensemble.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: