Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 175 papers

Complement C6 deficiency exacerbates pathophysiology after spinal cord injury.

  • Diane Su‎ et al.
  • Scientific reports‎
  • 2020‎

Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.


Compound heterozygous mutations in the C6 gene of a child with recurrent infections.

  • Dineke Westra‎ et al.
  • Molecular immunology‎
  • 2014‎

The complement system plays an important role in both the innate and adaptive immune system. Patients with inherited complement deficiencies have an increased risk of systemic bacterial infections. Deficiencies of the terminal complement pathway are especially associated with invasive meningococcal disease. Here, we report a case of a boy that presented with arthritis and recurrent bacterial and viral infections. Extensive analyses revealed decreased complement activity of both classical and alternative pathway, indicating a deficiency of C3 or one of the factors of the terminal complement pathway. Mutational analysis of the C6 gene identified two compound heterozygous mutations. An unknown missense aberration was found that involves the loss of a cysteine, possibly affecting the 3D structure of the protein. Furthermore, a known splice site variation was identified that results in a 14% shorter protein, due to transcription of amino acids that are normally intronic until a stop codon is reached (exon-intron boundary defect). It is known that the protein with this latter aberration is still functionally active when present with other C6 mutations and therefore, the consequences of the combination of the identified variations have been studied. Quantitative ELISAs showed that at least one allele produced a circulating C6 molecule that can be incorporated in the membrane attack complex, likely the truncated protein. In the present case we observed relapsing bacterial and viral infections, but no meningococcal disease. The reduced complement activity can be explained by the identified genetic variations in C6, as recombinant C6 supplementation corrected complement function in vitro.


Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity.

  • D V A Khoa‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2015‎

The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.


Image and motor behavior for monitoring tumor growth in C6 glioma model.

  • Taylla Klei Felix Souza‎ et al.
  • PloS one‎
  • 2018‎

The primary objective of this study is to monitor tumor growth by using image techniques and behavioral testing through general and specific motor activities (spontaneous movements and gait). Our sample includes male Wistar rats, 2 months old and weighing 250-300 g, that is categorized into three groups: control, sham, and experimental. The experimental group was anesthetized; the C6 cells with luciferase expression that were suspended in a culture medium were implanted into the right frontoparietal cortex of the rats. The sham group received implant only with culture medium without cells. Images and behavioral tests were evaluated at base time and at 7, 14, 21, and 28 days after induced tumor growth analysis. The tumor volume measured by magnetic resonance imaging (MRI) and quantitative bioluminescence imaging (BLI) signal showed a correlation coefficient of r = 0.96. The MRI showed that the mean tumor volume increased by approximately 10, 26, and 49 times according to a comparison of tumor volume on the seventh day with 14, 21, and 28 days, respectively. The quantification of the BLI signal was (4.12 ± 2.01) x 10(8), (8.33 ± 3.12) x 10(8), (28.43 ± 6.32) x 10(8), and (63.02 ± 10.53) x 10(8) photons/s at the seventh, fourteenth, twenty-first, and twenty-eighth day, respectively. After 14 days of tumor induction, both behavioral tests showed significant differences between tumor and sham or control groups. Our study showed a high correlation between MRI and BLI for tumor growth monitoring with complement aspects analysis in tumor volume. In addition, functional behavioral analysis displayed sensitivity to monitor tumor growth, as well as to detect early significant changes between groups, primarily in the tumor group. The results of gait analysis were more sensitive than general motor analysis.


Heat differentiated complement factor profiling.

  • Carl Hamsten‎ et al.
  • Journal of proteomics‎
  • 2015‎

Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.


The Protease SplB of Staphylococcus aureus Targets Host Complement Components and Inhibits Complement-Mediated Bacterial Opsonophagocytosis.

  • Prasad Dasari‎ et al.
  • Journal of bacteriology‎
  • 2022‎

Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.


M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

  • Nawal Bahia El Idrissi‎ et al.
  • Acta neuropathologica‎
  • 2015‎

Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.


Contribution of the infection-associated complement regulator-acquiring surface protein 4 (ErpC) to complement resistance of Borrelia burgdorferi.

  • Claudia Hammerschmidt‎ et al.
  • Clinical & developmental immunology‎
  • 2012‎

Borrelia burgdorferi evades complement-mediated killing by interacting with complement regulators through distinct complement regulator-acquiring surface proteins (CRASPs). Here, we extend our analyses to the contribution of CRASP-4 in mediating complement resistance of B. burgdorferi and its interaction with human complement regulators. CRASP-4 (also known as ErpC) was immobilized onto magnetic beads and used to capture proteins from human serum. Following Western blotting, factor H (CFH), CFH-related protein 1 (CFHR1), CFHR2, and CFHR5 were identified as ligands of CRASP-4. To analyze the impact of native CRASP-4 on mediating survival of serum-sensitive cells in human serum, a B. garinii strain was generated that ectopically expresses CRASP-4. CRASP-4-producing bacteria bound CFHR1, CFHR2, and CFHR5 but not CFH. In addition, transformed spirochetes deposited significant amounts of lethal complement components on their surface and were susceptible to human serum, thus indicating that CRASP-4 plays a subordinate role in complement resistance of B. burgdorferi.


Complement Inhibitor Therapy for Myasthenia Gravis.

  • Khaled Albazli‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Complement activation as a driver of pathology in myasthenia gravis (MG) has been appreciated for decades. The terminal complement component [membrane attack complex (MAC)] is found at the neuromuscular junctions of patients with MG. Animals with experimental autoimmune MG are dependent predominantly on an active complement system to develop weakness. Mice deficient in intrinsic complement regulatory proteins demonstrate a significant increase in the destruction of the neuromuscular junction. As subtypes of MG have been better defined, it has been appreciated that acetylcholine receptor antibody-positive disease is driven by complement activation. Preclinical assessments have confirmed that complement inhibition would be a viable therapeutic approach. Eculizumab, an antibody directed toward the C5 component of complement, was demonstrated to be effective in a Phase 3 trial with subsequent approval by the Federal Drug Administration of the United States and other worldwide regulatory agencies for its use in acetylcholine receptor antibody-positive MG. Second- and third-generation complement inhibitors are in development and approaching pivotal efficacy evaluations. This review will summarize the history and present the state of knowledge of this new therapeutic modality.


Borrelia valaisiana resist complement-mediated killing independently of the recruitment of immune regulators and inactivation of complement components.

  • Jasmin Schwab‎ et al.
  • PloS one‎
  • 2013‎

Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato complex differ in their resistance to complement-mediated killing, particularly in regard to human serum. In the present study, we elucidate the serum and complement susceptibility of B. valaisiana, a genospecies with the potential to cause Lyme disease in Europe as well as in Asia. Among the investigated isolates, growth of ZWU3 Ny3 was not affected while growth of VS116 and Bv9 was strongly inhibited in the presence of 50% human serum. Analyzing complement activation, complement components C3, C4 and C6 were deposited on the surface of isolates VS116 and Bv9, and similarly the membrane attack complex was formed on their surface. In contrast, no surface-deposited components and no aberrations in cell morphology were detected for serum-resistant ZWU3 Ny3. While further investigating the protective role of bound complement regulators in mediating complement resistance, we discovered that none of the B. valaisiana isolates analyzed bound complement regulators Factor H, Factor H-like protein 1, C4b binding protein or C1 esterase inhibitor. In addition, B. valaisiana also lacked intrinsic proteolytic activity to degrade complement components C3, C3b, C4, C4b, and C5. Taken together, these findings suggest that certain B. valaisiana isolates differ in their capability to resist complement-mediating killing by human serum. The molecular mechanism utilized by B. valaisiana to inhibit bacteriolysis appears not to involve binding of the key host complement regulators of the alternative, classical, and lectin pathways as already known for serum-resistant Lyme disease or relapsing fever borreliae.


Development, Characterization, and in vivo Validation of a Humanized C6 Monoclonal Antibody that Inhibits the Membrane Attack Complex.

  • Heidi Gytz Olesen‎ et al.
  • Journal of innate immunity‎
  • 2023‎

Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.


Expression of terminal complement components by human keratinocytes.

  • Krisztina K Timár‎ et al.
  • Molecular immunology‎
  • 2007‎

Human keratinocytes are important constituents of the skin immune system. They produce several cytokines, chemokines as well as some complement proteins. As regards soluble complement proteins, so far keratinocytes have been shown to synthesize only C3, factor B, factor H and factor I. Synthesis and regulation of synthesis of other complement proteins has not yet been studied. Here we studied the synthesis of terminal complement components, C5-C9 by human keratinocytes. We also studied the regulation of terminal complement synthesis in keratinocytes by several cytokines, namely, IL-1alpha, IL-2, IL-6, TGF-beta1, TNF-alpha, and IFN-gamma. Human keratinocytes constitutively expressed C5, C7, C8gamma and C9 mRNA but not C6, C8alpha and C8beta mRNA. They released C7 and C9, but not C5, C6 and C8. None of the cytokines tested had any influence on the synthesis of terminal components except TNF-alpha, which strongly upregulated C9 production. In conclusion, we demonstrate that keratinocytes are capable of synthesizing some of the terminal complement components and that the synthesis of C9 is regulated by TNF-alpha.


Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation.

  • Jason R Miller‎ et al.
  • GigaScience‎
  • 2018‎

The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome.


The Expression Profile of Complement Components in Podocytes.

  • Xuejuan Li‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors.


Alternative complement pathway deregulation is correlated with dengue severity.

  • Eduardo J M Nascimento‎ et al.
  • PloS one‎
  • 2009‎

The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity.


Expanding horizons in complement drug discovery: challenges and emerging strategies.

  • Claire L Harris‎
  • Seminars in immunopathology‎
  • 2018‎

The complement system is best known for its role in innate immunity, providing a first line of defence against infection, maintaining tissue homeostasis by flagging apoptotic cells and debris for removal, and orchestrating crosstalk between adaptive and innate immunity. In a growing number of diseases, complement is known to drive pathogenesis or to contribute as an inflammatory amplifier of a disease trigger. Association of complement with common and devastating diseases has driven an upsurge in complement drug discovery, but despite a wealth of knowledge in the complexities of the cascade, and many decades of effort, very few drugs have progressed to late-stage clinical studies. The reasons for this are becoming clear with difficulties including high target concentration and turnover, lack of clarity around disease mechanism and unwanted side effects. Lessons learnt from drugs which are either approved, or are currently in late-stage development, or have failed and dropped off the drug development landscape, have been invaluable to drive a new generation of innovative drugs which are progressing through clinical development. In this review, the challenges associated with complement drug discovery are discussed and the current drug development landscape is reviewed. The latest approaches to improve drug characteristics are explored and those agents which employ these technologies to improve accessibility to patients are highlighted.


Genomic view of the evolution of the complement system.

  • Masaru Nonaka‎ et al.
  • Immunogenetics‎
  • 2006‎

The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA.


Cell-Type-Specific Complement Expression in the Healthy and Diseased Retina.

  • Diana Pauly‎ et al.
  • Cell reports‎
  • 2019‎

Complement dysregulation is a feature of many retinal diseases, yet mechanistic understanding at the cellular level is limited. Given this knowledge gap about which retinal cells express complement, we performed single-cell RNA sequencing on ∼92,000 mouse retinal cells and validated our results in five major purified retinal cell types. We found evidence for a distributed cell-type-specific complement expression across 11 cell types. Notably, Müller cells are the major contributor of complement activators c1s, c3, c4, and cfb. Retinal pigment epithelium (RPE) mainly expresses cfh and the terminal complement components, whereas cfi and cfp transcripts are most abundant in neurons. Aging enhances c1s, cfb, cfp, and cfi expression, while cfh expression decreases. Transient retinal ischemia increases complement expression in microglia, Müller cells, and RPE. In summary, we report a unique complement expression signature for murine retinal cell types suggesting a well-orchestrated regulation of local complement expression in the retinal microenvironment.


Eculizumab treatment alters the proteometabolome beyond the inhibition of complement.

  • Christopher Nelke‎ et al.
  • JCI insight‎
  • 2023‎

Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify off-target effects shaping long-term outcomes. For this reason, we studied a cohort of patients with MG treated with either eculizumab or azathioprine as well as treatment-naive patients using a combined proteomics and metabolomics approach. This strategy validated known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients, including the oxidative stress response, mitogen-activated protein kinase signaling, and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct off-target effects induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.


Complement alternative pathway genetic variation and Dengue infection in the Thai population.

  • R Kraivong‎ et al.
  • Clinical and experimental immunology‎
  • 2013‎

Dengue disease is a mosquito-borne infection caused by Dengue virus. Infection may be asymptomatic or variably manifest as mild Dengue fever (DF) to the most severe form, Dengue haemorrhagic fever (DHF). Mechanisms that influence disease severity are not understood. Complement, an integral component of the immune system, is activated during Dengue infection and the degree of activation increases with disease severity. Activation of the complement alternative pathway is influenced by polymorphisms within activation (factor B rs12614/rs641153, C3 rs2230199) and regulatory [complement factor H (CFH) rs800292] proteins, collectively termed a complotype. Here, we tested the hypothesis that the complotype influences disease severity during secondary Dengue infection. In addition to the complotype, we also assessed two other disease-associated CFH polymorphisms (rs1061170, rs3753394) and a structural polymorphism within the CFH protein family. We did not detect any significant association between the examined polymorphisms and Dengue infection severity in the Thai population. However, the minor allele frequencies of the factor B and C3 polymorphisms were less than 10%, so our study was not sufficiently powered to detect an association at these loci. We were also unable to detect a direct interaction between CFH and Dengue NS1 using both recombinant NS1 and DV2-infected culture supernatants. We conclude that the complotype does not influence secondary Dengue infection severity in the Thai population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: