Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 475 papers

Complement C4 Prevents Viral Infection through Capsid Inactivation.

  • Maria Bottermann‎ et al.
  • Cell host & microbe‎
  • 2019‎

The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy.


Rapid activation of the complement system by cuprophane depends on complement component C4.

  • K Lhotta‎ et al.
  • Kidney international‎
  • 1998‎

Hemodialysis with cuprophane dialyzer membranes promotes rapid activation of the complement system, which is thought to be mediated by the alternative pathway. Complete hereditary deficiency of complement C4, a classical pathway component, in two hemodialysis patients provided the opportunity to investigate a possible role of the classical pathway. In two hemodialysis patients with both C4 isotypes, C4A and C4B, and in one patient with C4B deficiency complement activation occurred immediately after the onset of hemodialysis, with peak levels of C3a and terminal complement complex (TCC) after ten to fifteen minutes. In patients with complete C4 deficiency, C3a and TCC remained unchanged for fifteen minutes and increased thereafter, reaching the highest level after thirty minutes. The leukocyte nadir was also delayed from fifteen to thirty minutes. In vitro incubation of normal, C4A- or C4B-deficient serum with cuprophane caused complement activation after fifteen minutes. In contrast, no activation was observed in sera of four C4-deficient patients. The addition of normal serum or purified human C4 restored the capacity for rapid complement activation. In one patient with severe immunoglobulin deficiency, C3a and TCC levels increased only moderately after 25 minutes of cuprophane dialysis. This patient's serum also exhibited delayed complement activation in vitro, which was normalized after pretreatment of cuprophane with immunoglobulins. Preincubation of normal serum with MgEGTA, a blocker of the classical pathway, inhibited rapid complement activation through cuprophane. As basal levels of C4a are markedly increased in hemodialysis patients (3450 +/- 850 ng/ml) compared to healthy controls (224 +/- 81 ng/ml), no further elevation of C4a was detectable during cuprophane hemodialysis. Incubation of normal serum with cuprophane, however, caused a slight increase in C4a after five minutes. These results indicate that the initial deposition of complement C3b on the cuprophane membrane, necessary for activation of the amplification loop of the alternative pathway, is mediated by the classical pathway C3-convertase C4b2a. We propose an extended concept of complement activation through cuprophane, which is based on four steps: (a) binding of anti-polysaccharide antibodies, (b) classical pathway activation, (c) alternative pathway activation and (d) terminal pathway activation.


Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2.

  • Z Chen‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

The complement system enhances antibody responses to T-dependent antigens, but paradoxically, deficiencies in C1 and C4 are strongly linked to autoantibody production in humans. In mice, disruption of the C1qa gene also results in spontaneous autoimmunity. Moreover, deficiencies in C4 or complement receptors 1 and 2 (CR1/CR2) lead to reduced selection against autoreactive B cells and impaired humoral responses. These observations suggest that C1 and C4 act through CR1/CR2 to enhance humoral immunity and somehow suppress autoimmunity. Here we report high titers of spontaneous antinuclear antibody (ANA) in C4(-/)- mice. This systemic lupus erythematosus-like autoimmunity is highly penetrant; by 10 mo of age, all C4(-)(/)- females and most males produced ANA. In contrast, titers and frequencies of ANA in Cr2(-)(/)- mice, which are deficient in CR1 and CR2, never rose significantly above those in normal controls. Glomerular deposition of immune complexes (ICs), glomerulonephritis, and splenomegaly were observed in C4(-)(/)- but not Cr2(-)(/)- mice. C4(-)(/)-, but not Cr2(-)(/)-, mice accumulate activated T and B cells. Clearance of circulating ICs is impaired in preautoimmune C4(-)(/)-, but not Cr2(-)(/)-, mice. C4 deficiency causes spontaneous, lupus-like autoimmunity through a mechanism that is independent of CR1/CR2.


Structure-Based Modeling of Complement C4 Mediated Neutralization of Adenovirus.

  • Corey C Emerson‎ et al.
  • Viruses‎
  • 2021‎

Adenovirus (AdV) infection elicits a strong immune response with the production of neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the deposition of complement component C4b on the capsid, and the neutralization of the virus. The mechanism of AdV neutralization by C4b is independent of downstream complement proteins and involves the blockage of the release of protein VI, which is required for viral escape from the endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV, we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric penton base and C4b indicated that stabilizing interactions may form between C4b and multiple RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b with additional RGD loops on the same penton base multimer and that this entanglement blocks AdV uncoating.


Investigation of complement component C4 copy number variation in human longevity.

  • Friederike Flachsbart‎ et al.
  • PloS one‎
  • 2014‎

Genetic factors have been estimated to account for about 25% of the variation in an adult's life span. The complement component C4 with the isotypes C4A and C4B is an effector protein of the immune system, and differences in the overall C4 copy number or gene size (long C4L; short C4S) may influence the strength of the immune response and disease susceptibilities. Previously, an association between C4B copy number and life span was reported for Hungarians and Icelanders, where the C4B*Q0 genotype, which is defined by C4B gene deficiency, showed a decrease in frequency with age. Additionally, one of the studies indicated that a low C4B copy number might be a genetic trait that is manifested only in the presence of the environmental risk factor "smoking". These observations prompted us to investigate the role of the C4 alleles in our large German longevity sample (∼ 700 cases; 94-110 years and ∼ 900 younger controls). No significant differences in the number of C4A, C4B and C4S were detected. Besides, the C4B*Q0 carrier state did not decrease with age, irrespective of smoking as an interacting variable. However, for C4L*Q0 a significantly different carrier frequency was observed in the cases compared with controls (cases: 5.08%; controls: 9.12%; p = 0.003). In a replication sample of 714 German cases (91-108 years) and 890 controls this result was not replicated (p = 0.14) although a similar trend of decreased C4L*Q0 carrier frequency in cases was visible (cases: 7.84%; controls: 10.00%).


Association Study of the Complement Component C4 Gene in Tardive Dyskinesia.

  • Clement C Zai‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Tardive dyskinesia (TD) is a movement disorder that may develop in schizophrenia patients being treated long-term with antipsychotic medication. TD interferes with voluntary movements and leads to stigma, and can be associated with treatment non-adherence. The etiology of TD is unclear, but it appears to have a genetic component. There is emerging evidence of immune dysregulation in TD. In the current study, we set out to investigate the complex schizophrenia-associated complement component 4 (C4) gene for possible association with TD occurrence and TD severity as assessed by the Abnormal Involuntary Movement Scale (AIMS) in a sample of 129 schizophrenia patients of European ancestry. We have genotyped the copy numbers of long and short forms of C4A and C4B gene variants in 129 European ancestry patients with schizophrenia or schizoaffective disorder. We did not find predicted C4A or C4B expression to be nominally associated with TD risk or severity. However, we found the number of copies of C4BL to be nominally associated with TD severity (p = 0.020).


Antagonism of the complement component C4 by flavivirus nonstructural protein NS1.

  • Panisadee Avirutnan‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection.


Complement C4 Gene Copy Number Variation Genotyping by High Resolution Melting PCR.

  • Claudia P Jaimes-Bernal‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Complement C4 gene copy number variation plays an important role as a determinant of genetic susceptibility to common diseases, such as systemic lupus erythematosus, schizophrenia, rheumatoid arthritis, and infectious diseases. This study aimed to develop an assay for the quantification of copy number variations in the C4 locus.


The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands.

  • Stefania Giussani‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2019‎

Group B Streptococcus (GBS) colonizes the human lower intestinal and genital tracts and constitutes a major threat to neonates from pregnant carrier mothers and to adults with underlying morbidity. The pathogen expresses cell-surface virulence factors that enable cell adhesion and penetration and that counteract innate and adaptive immune responses. Among these, the complement interfering protein (CIP) was recently described for its capacity to interact with the human C4b ligand and to interfere with the classical- and lectin-complement pathways. In the present study, we provide evidence that CIP can also interact with C3, C3b, and C3d. Immunoassay-based competition experiments showed that binding of CIP to C3d interferes with the interaction between C3d and the complement receptor 2/cluster of differentiation 21 (CR2/CD21) receptor on B cells. By B-cell intracellular signaling assays, CIP was confirmed to down-regulate CR2/CD21-dependent B-cell activation. The CIP domain involved in C3d binding was mapped via hydrogen deuterium exchange-mass spectrometry. The data obtained reveal a new role for this GBS polypeptide at the interface between the innate and adaptive immune responses, adding a new member to the growing list of virulence factors secreted by gram-positive pathogens that incorporate multiple immunomodulatory functions.-Giussani, S., Pietrocola, G., Donnarumma, D., Norais, N., Speziale, P., Fabbrini, M., Margarit, I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands.


Association study of the complement component C4 gene and suicide risk in schizophrenia.

  • Mahbod Ebrahimi‎ et al.
  • Schizophrenia (Heidelberg, Germany)‎
  • 2024‎

Schizophrenia is a severe mental illness and a major risk factor for suicide, with approximately 50% of schizophrenia patients attempting and 10% dying from suicide. Although genetic components play a significant role in schizophrenia risk, the underlying genetic risk factors for suicide are poorly understood. The complement component C4 gene, an immune gene involved in the innate immune system and located in the major histocompatibility complex (MHC) region, has been identified to be strongly associated with schizophrenia risk. In addition, recent findings have also suggested that the MHC region has been associated with suicide risk across disorders, making C4 a potential candidate of interest for studying suicidality in schizophrenia patients. Despite growing interest in investigating the association between the C4 gene and schizophrenia, to our knowledge, no work has been done to examine the potential of C4 variants as suicide risk factors in patients with schizophrenia. In this study, we investigated the association between different C4 copy number variants and predicted C4 brain expression with suicidal outcomes (suicide attempts/suicidal ideation). We directly genotyped 434 schizophrenia patients to determine their C4A and C4B copy number variants. We found the C4AS copy number to be marginally and negatively associated with suicide risk, potentially being protective against suicide attempts (OR = 0.49; p = 0.05) and suicidal ideation (OR = 0.65; p = 0.07). Furthermore, sex-stratified analyses revealed that there are no significant differences between males and females. Our preliminary findings encourage additional studies of C4 and potential immune dysregulation in suicide.


Complement C4 Is Reduced in iPSC-Derived Astrocytes of Autism Spectrum Disorder Subjects.

  • Fernanda Mansur‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

In recent years, accumulating evidence has shown that the innate immune complement system is involved in several aspects of normal brain development and in neurodevelopmental disorders, including autism spectrum disorder (ASD). Although abnormal expression of complement components was observed in post-mortem brain samples from individuals with ASD, little is known about the expression patterns of complement molecules in distinct cell types in the developing autistic brain. In the present study, we characterized the mRNA and protein expression profiles of a wide range of complement system components, receptors and regulators in induced pluripotent stem cell (iPSC)-derived neural progenitor cells, neurons and astrocytes of individuals with ASD and neurotypical controls, which constitute in vitro cellular models that recapitulate certain features of both human brain development and ASD pathophysiology. We observed that all the analyzed cell lines constitutively express several key complement molecules. Interestingly, using different quantification strategies, we found that complement C4 mRNA and protein are expressed in significantly lower levels by astrocytes derived from ASD individuals compared to control astrocytes. As astrocytes participate in synapse elimination, and diminished C4 levels have been linked to defective synaptic pruning, our findings may contribute to an increased understanding of the atypically enhanced brain connectivity in ASD.


Complement C4 induces regulatory T cells differentiation through dendritic cell in systemic lupus erythematosus.

  • Hong-Bin Cheng‎ et al.
  • Cell & bioscience‎
  • 2015‎

Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease. Complement component 4 (C4) has be proved to play a role in pathogenesis of SLE. In the present study, we investigated the effect of C4 on T cells differentiation.


Complement C4-A and Plasminogen as Potential Biomarkers for Prediction of Papillary Thyroid Carcinoma.

  • Yichao Wang‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Early diagnosis and therapy of papillary thyroid carcinoma (PTC) is essential for reducing recurrence and improving the long-term survival. In this study, we aimed to investigate the proteome profile of plasma and screen unique proteins which could be used as a biomarker for predicting PTC.


Phenotypes of the fourth complement component (C4) in black Americans from the southeastern United States.

  • B Budowle‎ et al.
  • Journal of immunogenetics‎
  • 1983‎

C4 is composed of two tightly linked genes (C4A and C4B) lying within the major histocompatibility complex of chromosome 6 that can be demonstrated by agarose gel electrophoresis. Seven alleles and five alleles at the C4A and C4B loci, respectively, were detected in 169 black individuals from the southeastern United States. Furthermore, the phenotypic frequencies of C4A6, C4A5, C4A4, C4B4, C4B3 and C4BQ0 were significantly different between black and white Americans.


Genome-wide association study for serum complement C3 and C4 levels in healthy Chinese subjects.

  • Xiaobo Yang‎ et al.
  • PLoS genetics‎
  • 2012‎

Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33 × 10(-11) and P = 1.83 × 10(-9), respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5' and 3' of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19 × 10(-22) to 5.62 × 10(-97). HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms.


Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease.

  • Jun Zhou‎ et al.
  • Journal of neurochemistry‎
  • 2008‎

Alzheimer's disease (AD) is a neurodegenerative disease resulting in progressive cognitive decline. Amyloid plaque deposits consisting specifically of beta-amyloid peptides that have formed fibrils displaying beta-pleated sheet conformation are associated with activated microglia and astrocytes, are colocalized with C1q and other complement activation products, and appear at the time of cognitive decline in AD. Amyloid precursor protein (APP) transgenic mouse models of AD that lack the ability to activate the classical complement pathway display less neuropathology than do the APPQ+/+ mice, consistent with the hypothesis that complement activation and the resultant inflammation may play a role in the pathogenesis of AD. Further investigation of the presence of complement proteins C3 and C4 in the brain of these mice demonstrate that both C3 and C4 deposition increase with age in APPQ+/+ transgenic mice, as expected with the age-dependent increase in fibrillar beta-amyloid deposition. In addition, while C4 is predominantly localized on the plaques and/or associated with oligodendrocytes in APPQ+/+ mice, little C4 is detected in APPQ-/- brains consistent with a lack of classical complement pathway activation because of the absence of C1q in these mice. In contrast, plaque and cell associated C3 immunoreactivity is seen in both animal models and, surprisingly, is higher in APPQ-/- than in APPQ+/+ mice, providing evidence for alternative pathway activation. The unexpected increase in C3 levels in the APPQ-/- mice coincident with decreased neuropathology provides support for the hypothesis that complement can mediate protective events as well as detrimental events in this disease. Finally, induced expression of C3 in a subset of astrocytes suggests the existence of differential activation states of these cells.


Associations Between Genotype and Peripheral Complement Proteins in First-Episode Psychosis: Evidences From C3 and C4.

  • Yu Chen‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Schizophrenia is a common neuropsychiatric disorder with complex pathophysiology. Recent reports suggested that complement system alterations contributed to pathological synapse elimination that was associated with psychiatric symptoms in schizophrenia. Complement component 3 (C3) and complement component 4 (C4) play central roles in complement cascades. In this study, we compared peripheral C3 and C4 protein levels between first-episode psychosis (FEP) and healthy control (HC). Then we explored whether single nucleotide polymorphisms (SNPs) at C3 or C4 genes affect peripheral C3 or C4 protein levels. In total, 181 FEPs and 204 HCs were recruited after providing written informed consent. We measured serum C3 and C4 protein levels using turbidimetric inhibition immunoassay and genotyped C3 and C4 polymorphisms using the Sequenom MassArray genotyping. Our results showed that three SNPs were nominally associated with schizophrenia (rs11569562/C3: A > G, p = 0.048; rs2277983/C3: A > G, p = 0.040; rs149898426/C4: G > A, p = 0.012); one haplotype was nominally associated with schizophrenia, constructed by rs11569562-rs2277983-rs1389623 (GGG, p = 0.048); FEP had higher serum C3 and C4 (both p < 0.001) levels than HC; rs1389623 polymorphisms were associated with elevated C3 levels in our meta-analysis (standard mean difference, 0.50; 95% confidence interval, 0.30 to 0.71); the FEP with CG genotype of rs149898426 had higher C4 levels than that with GG genotypes (p = 0.005). Overall, these findings indicated that complement system altered in FEP and rs149898426 of C4 gene represented a genetic risk marker for schizophrenia likely through mediating complement system. Further studies with larger sample sizes needs to be validated.


Serum levels of complement C4 fragments correlate with disease activity in multiple sclerosis: proteomic analysis.

  • Setsu Sawai‎ et al.
  • Journal of neuroimmunology‎
  • 2010‎

To detect serum biomarkers associated with disease activity in relapsing-remitting multiple sclerosis (MS). We studied serum low-molecular peptide profiling of MS patients and normal controls comprehensively by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Serum level of 1741 Da peptide was increased at the time of clinical relapse in patients than in normal controls and returned toward normal during remission. Tandem mass spectrometry analysis revealed that the peptide was a fragment of complement C4 (NGFKSHALQLNNRQI). This fragment peptide could be a possible marker of disease activity. It may reflect complement activation in the pathogenesis of MS.


Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis.

  • Samy Hakroush‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Acute kidney injury (AKI) is a common and severe complication of antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) causing progressive chronic kidney disease (CKD), end-stage renal disease (ESRD) or death. Pathogenic ANCAs, in particular proteinase 3 (PR3) and myeloperoxidase (MPO), trigger a deleterious immune response resulting in pauci-immune necrotizing and crescentic glomerulonephritis (GN), a common manifestation of glomerular injury in AAV. However, there is growing evidence that activation of the complement pathway contributes to the pathogenesis and progression of AAV. We here aimed to compare glomerular and tubulointerstitial lesions in ANCA GN and extrarenal manifestation of AAV in association with levels of circulating complement components C3c and C4.


Complement Component C4 Regulates the Development of Experimental Autoimmune Uveitis through a T Cell-Intrinsic Mechanism.

  • Lingjun Zhang‎ et al.
  • Frontiers in immunology‎
  • 2017‎

In addition to its conventional roles in the innate immune system, complement has been found to directly regulate T cells in the adaptive immune system. Complement components, including C3, C5, and factor D, are important in regulating T cell responses. However, whether complement component C4 is involved in regulating T cell responses remains unclear. In this study, we used a T cell-dependent model of autoimmunity, experimental autoimmune uveitis (EAU) to address this issue. We compared disease severity in wild-type (WT) and C4 knockout (KO) mice using indirect ophthalmoscopy, scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, and histopathological analysis. We also explored the underlying mechanism by examining T cell responses in ex vivo antigen-specific recall assays and in in vitro T cell priming assays using bone marrow-derived dendritic cells, splenic dendritic cells, and T cells from WT or C4 KO mice. We found that C4 KO mice develop less severe retinal inflammation than WT mice in EAU and show reduced autoreactive T cell responses and decreased retinal T cell infiltration. We also found that T cells, but not dendritic cells, from C4 KO mice have impaired function. These results demonstrate a previously unknown role of C4 in regulating T cell responses, which affects the development of T cell-mediated autoimmunity, as exemplified by EAU. Our data could shed light on the pathogenesis of autoimmune uveitis in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: