Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,966 papers

Complement activation by recombinant adenoviruses.

  • G Cichon‎ et al.
  • Gene therapy‎
  • 2001‎

Recombinant adenoviruses are currently the most important vector system in gene therapy. Adenoviruses frequently cause upper respiratory tract infections in humans and anti-adenoviral antibodies are found in 35-70% of the population. Therefore in the majority of potential patients receiving adenoviral gene therapy, the contact of virus particles and blood will lead to the formation of antigen-antibody complexes. These complexes have the ability to induce inflammatory reactions via an activation of the complement system. We have determined the level of C3a (the most reactive complement component) generated in isolated citrate plasma of healthy individuals after challenge with recombinant and wild-type adenoviruses in amounts corresponding to virus blood levels to be expected in patients during adenoviral gene therapy. All plasma samples containing anti-adenoviral antibodies showed a substantial, dose-dependent generation of C3a. A virus plasma level of about 7.5 x 10(9) particles/ml (which was calculated to be the highest blood level reached during clinical trials in the past) induced an average release of about 3000 ng/ml C3a (baseline levels <140 ng/ml). Analyzing the nature of anti-adenoviral antibodies showed, that not only antibodies with neutralizing properties (anti-Ad5), but also non-neutralizing anti-adenoviral antibodies are capable of complement activation. This study suggests that complement activation can be ignored in local low-dose applications of recombinant adenoviruses, but warrants attention after systemic application of large viral quantities. In clinical protocols aiming at systemic virus application, measures for monitoring and controlling the complement system should be included on a regular basis.


Factors affecting IgG4-mediated complement activation.

  • Nienke Oskam‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Of the four human immunoglobulin G (IgG) subclasses, IgG4 is considered the least inflammatory, in part because it poorly activates the complement system. Regardless, in IgG4 related disease (IgG4-RD) and in autoimmune disorders with high levels of IgG4 autoantibodies, the presence of these antibodies has been linked to consumption and deposition of complement components. This apparent paradox suggests that conditions may exist, potentially reminiscent of in vivo deposits, that allow for complement activation by IgG4. Furthermore, it is currently unclear how variable glycosylation and Fab arm exchange may influence the ability of IgG4 to activate complement. Here, we used well-defined, glyco-engineered monoclonal preparations of IgG4 and determined their ability to activate complement in a controlled system. We show that IgG4 can activate complement only at high antigen and antibody concentrations, via the classical pathway. Moreover, elevated or reduced Fc galactosylation enhanced or diminished complement activation, respectively, with no apparent contribution from the lectin pathway. Fab glycans slightly reduced complement activation. Lastly, we show that bispecific, monovalent IgG4 resulting from Fab arm exchange is a less potent activator of complement than monospecific IgG4. Taken together, these results imply that involvement of IgG4-mediated complement activation in pathology is possible but unlikely.


Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation.

  • Ran Sun‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated.


Targeting complement activation in COVID-19.

  • Hrishikesh S Kulkarni‎ et al.
  • Blood‎
  • 2020‎

No abstract available


Rapid activation of the complement system by cuprophane depends on complement component C4.

  • K Lhotta‎ et al.
  • Kidney international‎
  • 1998‎

Hemodialysis with cuprophane dialyzer membranes promotes rapid activation of the complement system, which is thought to be mediated by the alternative pathway. Complete hereditary deficiency of complement C4, a classical pathway component, in two hemodialysis patients provided the opportunity to investigate a possible role of the classical pathway. In two hemodialysis patients with both C4 isotypes, C4A and C4B, and in one patient with C4B deficiency complement activation occurred immediately after the onset of hemodialysis, with peak levels of C3a and terminal complement complex (TCC) after ten to fifteen minutes. In patients with complete C4 deficiency, C3a and TCC remained unchanged for fifteen minutes and increased thereafter, reaching the highest level after thirty minutes. The leukocyte nadir was also delayed from fifteen to thirty minutes. In vitro incubation of normal, C4A- or C4B-deficient serum with cuprophane caused complement activation after fifteen minutes. In contrast, no activation was observed in sera of four C4-deficient patients. The addition of normal serum or purified human C4 restored the capacity for rapid complement activation. In one patient with severe immunoglobulin deficiency, C3a and TCC levels increased only moderately after 25 minutes of cuprophane dialysis. This patient's serum also exhibited delayed complement activation in vitro, which was normalized after pretreatment of cuprophane with immunoglobulins. Preincubation of normal serum with MgEGTA, a blocker of the classical pathway, inhibited rapid complement activation through cuprophane. As basal levels of C4a are markedly increased in hemodialysis patients (3450 +/- 850 ng/ml) compared to healthy controls (224 +/- 81 ng/ml), no further elevation of C4a was detectable during cuprophane hemodialysis. Incubation of normal serum with cuprophane, however, caused a slight increase in C4a after five minutes. These results indicate that the initial deposition of complement C3b on the cuprophane membrane, necessary for activation of the amplification loop of the alternative pathway, is mediated by the classical pathway C3-convertase C4b2a. We propose an extended concept of complement activation through cuprophane, which is based on four steps: (a) binding of anti-polysaccharide antibodies, (b) classical pathway activation, (c) alternative pathway activation and (d) terminal pathway activation.


Complement activation and inhibition in wound healing.

  • Gwendolyn Cazander‎ et al.
  • Clinical & developmental immunology‎
  • 2012‎

Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required.


Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

  • Seiichi Mawatari‎ et al.
  • PloS one‎
  • 2013‎

It has been hypothesized that persistent hepatitis C virus (HCV) infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4), composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation.


Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1.

  • Elena Boero‎ et al.
  • Scientific reports‎
  • 2023‎

The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.


Platelet activation leads to activation and propagation of the complement system.

  • Ian Del Conde‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Inflammation and thrombosis are two responses that are linked through a number of mechanisms, one of them being the complement system. Various proteins of the complement system interact specifically with platelets, which, in turn, activates them and promotes thrombosis. In this paper, we show that the converse is also true: activated platelets can activate the complement system. As assessed by flow cytometry and immunoblotting, C3 deposition increased on the platelet surface upon cell activation with different agonists. Activation of the complement system proceeded to its final stages, which was marked by the increased generation of the anaphylotoxin C3a and the C5b-9 complex. We identified P-selectin as a C3b-binding protein, and confirmed by surface plasmon resonance binding that these two proteins interact specifically with a dissociation constant of 1 microM. Using heterologous cells expressing P-selectin, we found that P-selectin alone is sufficient to activate the complement system, marked by increases in C3b deposition, C3a generation, and C5b-9 formation. In summary, we have found that platelets are capable of activating the complement system, and have identified P-selectin as a receptor for C3b capable of initiating complement activation. These findings point out an additional mechanism by which inflammation may localize to sites of vascular injury and thrombosis.


Complement Factor H-Related 3 Enhanced Inflammation and Complement Activation in Human RPE Cells.

  • Nicole Schäfer‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Complement Factor H-Related 3 (FHR-3) is a major regulator of the complement system, which is associated with different diseases, such as age-related macular degeneration (AMD). However, the non-canonical local, cellular functions of FHR-3 remained poorly understood. Here, we report that FHR-3 bound to oxidative stress epitopes and competed with FH for interaction. Furthermore, FHR-3 was internalized by viable RPE cells and modulated time-dependently complement component (C3, FB) and receptor (C3aR, CR3) expression of human RPE cells. Independently of any external blood-derived proteins, complement activation products were detected. Anaphylatoxin C3a was visualized in treated cells and showed a translocation from the cytoplasm to the cell membrane after FHR-3 exposure. Subsequently, FHR-3 induced a RPE cell dependent pro-inflammatory microenvironment. Inflammasome NLRP3 activation and pro-inflammatory cytokine secretion of IL-1ß, IL-18, IL-6 and TNF-α were induced after FHR-3-RPE interaction. Our previously published monoclonal anti-FHR-3 antibody, which was chimerized to reduce immunogenicity, RETC-2-ximab, ameliorated the effect of FHR-3 on ARPE-19 cells. Our studies suggest FHR-3 as an exogenous trigger molecule for the RPE cell "complosome" and as a putative target for a therapeutic approach for associated degenerative diseases.


Inhibition of complement pathway activation with Pozelimab, a fully human antibody to complement component C5.

  • Adrianna Latuszek‎ et al.
  • PloS one‎
  • 2020‎

Complement is a key component of the innate immune system. Inappropriate complement activation underlies the pathophysiology of a variety of diseases. Complement component 5 (C5) is a validated therapeutic target for complement-mediated diseases, but the development of new therapeutics has been limited by a paucity of preclinical models to evaluate the pharmacokinetic (PK) and pharmacodynamic (PD) properties of candidate therapies. The present report describes a novel humanized C5 mouse and its utility in evaluating a panel of fully human anti-C5 antibodies. Surprisingly, humanized C5 mice revealed marked differences in clearance rates amongst a panel of anti-C5 antibodies. One antibody, pozelimab (REGN3918), bound C5 and C5 variants with high affinity and potently blocked complement-mediated hemolysis in vitro. In studies conducted in both humanized C5 mice and cynomolgus monkeys, pozelimab demonstrated prolonged PK and durable suppression of hemolytic activity ex vivo. In humanized C5 mice, a switch in dosing from in-house eculizumab to pozelimab was associated with normalization of serum C5 concentrations, sustained suppression of hemolytic activity ex vivo, and no overt toxicity. Our findings demonstrate the value of humanized C5 mice in identifying new therapeutic candidates and treatment options for complement-mediated diseases.


Fluoride Modification of Titanium Surfaces Enhance Complement Activation.

  • Maria H Pham‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

Immediately after dental implant insertion, blood will be in direct contact and interact with the implant surface and activates inflammatory responses and complement cascades within seconds. The aim of the present study was to determine the ability of fluoride-modified titanium surfaces to activate complement cascades using the human buffy coat as model. The buffy coats were exposed to hydrofluoric acid-modified surfaces for a short time and its responses were compared to controls. Identification and quantification of complement cascade biomarkers were conducted using ELISA kits and multianalyte profiling using Luminex. A lower level of C3 at 30 min and increased levels of C4, MIP-4, CRP, and pigment epithelium-derived factor at 360 min were found on modified surfaces as compared to controls. We found no significant differences in the levels of C3a, C5a, C Factor H, α2M, ApoA1, ApoC3, ApoE, Prealbumin, α1AT, and SAP in modified surfaces in the buffy coats. We conclude that titanium surfaces treated with hydrofluoric acid modify the levels of specific biomarkers related to the complement cascade and angiogenesis and, thus, tissue growth, remodeling and repair, as this may play a role in the enhanced clinical performance of fluoride-modified Ti dental implants.


Cerebral complement C1q activation in chronic Toxoplasma infection.

  • Jianchun Xiao‎ et al.
  • Brain, behavior, and immunity‎
  • 2016‎

Exposure to the neurotropic parasite, Toxoplasma gondii, causes significant brain and behavioral anomalies in humans and other mammals. Understanding the cellular mechanisms of T. gondii-generated brain pathologies would aid the advancement of novel strategies to reduce disease. Complement factor C1q is part of a classic immune pathway that functions peripherally to tag and remove infectious agents and cellular debris from circulation. In the developing and adult brain, C1q modifies neuronal architecture through synapse marking and pruning. T. gondii exposure and complement activation have both been implicated in the development of complex brain disorders such as schizophrenia. Thus, it seems logical that mechanistically, the physiological pathways associated with these two factors are connected. We employed a rodent model of chronic infection to investigate the extent to which cyst presence in the brain triggers activation of cerebral C1q. Compared to uninfected mice, cortical C1q was highly expressed at both the RNA and protein levels in infected animals bearing a high cyst burden. In these mice, C1q protein localized to cytoplasm, adjacent to GFAP-labeled astrocytes, near degenerating cysts, and in punctate patterns along processes. In summary, our results demonstrated an upregulation of cerebral C1q in response to latent T. gondii infection. Our data preliminarily suggest that this complement activity may aid in the clearance of this parasite from the CNS and in so doing, have consequences for the connectivity of neighboring cells and synapses.


Complement alternative pathway activation in human nonalcoholic steatohepatitis.

  • Filip M Segers‎ et al.
  • PloS one‎
  • 2014‎

The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway activation in driving hepatic inflammation in NASH. Therefore, alternative pathway factors may be considered attractive targets for treating NASH by inhibiting complement activation.


Human complement C3 deficiency: Th1 induction requires T cell-derived complement C3a and CD46 activation.

  • Arije Ghannam‎ et al.
  • Molecular immunology‎
  • 2014‎

Human T helper type 1 (Th1) responses are essential in defense. Although T cell receptor (TCR) and co-stimulator engagement are indispensable for T cell activation, stimulation of additional receptor pathways are also necessary for effector induction. For example, engagement of the complement regulator CD46 by its ligand C3b generated upon TCR activation is required for IFN-γ production as CD46-deficient patients lack Th1 responses. Utilizing T cells from two C3-deficient patients we demonstrate here that normal Th1 responses also depend on signals mediated by the anaphylatoxin C3a receptor (C3aR). Importantly, and like in CD46-deficient patients, whilst Th1 induction are impaired in C3-deficient patients in vitro, their Th2 responses are unaffected. Furthermore, C3-deficient CD4(+) T cells present with reduced expression of CD25 and CD122, further substantiating the growing notion that complement fragments regulate interleukin-2 receptor (IL-2R) assembly and that disturbance of complement-guided IL-2R assembly contributes to aberrant Th1 effector responses. Lastly, sustained intrinsic production of complement fragments may participate in the Th1 contraction phase as both C3a and CD46 engagement regulate IL-10 co-expression in Th1 cells. These data suggest that C3aR and CD46 activation via intrinsic generation of their respective ligands is an integral part of human Th1 (but not Th2) immunity.


Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking.

  • Lin-Ping Wu‎ et al.
  • Nature communications‎
  • 2021‎

Complement is an enzymatic humoral pattern-recognition defence system of the body. Non-specific deposition of blood biomolecules on nanomedicines triggers complement activation through the alternative pathway, but complement-triggering mechanisms of nanomaterials with dimensions comparable to or smaller than many globular blood proteins are unknown. Here we study this using a library of <6 nm poly(amido amine) dendrimers bearing different end-terminal functional groups. Dendrimers are not sensed by C1q and mannan-binding lectin, and hence do not trigger complement activation through these pattern-recognition molecules. While, pyrrolidone- and carboxylic acid-terminated dendrimers fully evade complement response, and independent of factor H modulation, binding of amine-terminated dendrimers to a subset of natural IgM glycoforms triggers complement activation through lectin pathway-IgM axis. These findings contribute to mechanistic understanding of complement surveillance of dendrimeric materials, and provide opportunities for dendrimer-driven engineering of complement-safe nanomedicines and medical devices.


Functional analysis of Ficolin-3 mediated complement activation.

  • Estrid Hein‎ et al.
  • PloS one‎
  • 2010‎

The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway.


Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

  • Julia A Sharp‎ et al.
  • PloS one‎
  • 2015‎

The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.


Complement Expression and Activation in Osteoarthritis Joint Compartments.

  • Elisa Assirelli‎ et al.
  • Frontiers in immunology‎
  • 2020‎

To investigate complement(C) factors(F) and their activation fragments expression in OA joint tissues.


Spatially conserved motifs in complement control protein domains determine functionality in regulators of complement activation-family proteins.

  • Hina Ojha‎ et al.
  • Communications biology‎
  • 2019‎

Regulation of complement activation in the host cells is mediated primarily by the regulators of complement activation (RCA) family proteins that are formed by tandemly repeating complement control protein (CCP) domains. Functional annotation of these proteins, however, is challenging as contiguous CCP domains are found in proteins with varied functions. Here, by employing an in silico approach, we identify five motifs which are conserved spatially in a specific order in the regulatory CCP domains of known RCA proteins. We report that the presence of these motifs in a specific pattern is sufficient to annotate regulatory domains in RCA proteins. We show that incorporation of the lost motif in the fourth long-homologous repeat (LHR-D) in complement receptor 1 regains its regulatory activity. Additionally, the motif pattern also helped annotate human polydom as a complement regulator. Thus, we propose that the motifs identified here are the determinants of functionality in RCA proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: