Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Prevalence and Determinants of Color Vision Defects among Preparatory University Students at Makkah, Saudi Arabia.

  • Osama Abdulqadir Khairoalsindi‎ et al.
  • Middle East African journal of ophthalmology‎
  • 2019‎

To estimate the magnitude and determinants of color vision defects (CVD) among preparatory health science students.


The causal mutation in ARR3 gene for high myopia and progressive color vision defect.

  • Lei Gu‎ et al.
  • Scientific reports‎
  • 2023‎

The ARR3 gene, also known as cone arrestin, belongs to the arrestin family and is expressed in cone cells, inactivating phosphorylated-opsins and preventing cone signals. Variants of ARR3 reportedly cause X-linked dominant female-limited early-onset (age < 7 years old) high myopia (< - 6D). Here, we reveal a new mutation (c.228T>A, p.Tyr76*) in ARR3 gene that can cause early-onset high myopia (eoHM) limited to female carriers. Protan/deutan color vision defects were also found in family members, affecting both genders. Using ten years of clinical follow-up data, we identified gradually worsening cone dysfunction/color vision as a key feature among affected individuals. We present a hypothesis that higher visual contrast due to the mosaic of mutated ARR3 expression in cones contributes to the development of myopia in female carriers.


Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze.

  • Jean-Philippe Vit‎ et al.
  • Scientific reports‎
  • 2021‎

We introduce a novel visual-stimuli four-arm maze (ViS4M) equipped with spectrally- and intensity-controlled LED emitters and dynamic grayscale objects that relies on innate exploratory behavior to assess color and contrast vision in mice. Its application to detect visual impairments during normal aging and over the course of Alzheimer's disease (AD) is evaluated in wild-type (WT) and transgenic APPSWE/PS1∆E9 murine models of AD (AD+) across an array of irradiance, chromaticity, and contrast conditions. Substantial color and contrast-mode alternation deficits appear in AD+ mice at an age when hippocampal-based memory and learning is still intact. Profiling of timespan, entries and transition patterns between the different arms uncovers variable AD-associated impairments in contrast sensitivity and color discrimination, reminiscent of tritanomalous defects documented in AD patients. Transition deficits are found in aged WT mice in the absence of alternation decline. Overall, ViS4M is a versatile, controlled device to measure color and contrast-related vision in aged and diseased mice.


A duplication on chromosome 16q12 affecting the IRXB gene cluster is associated with autosomal dominant cone dystrophy with early tritanopic color vision defect.

  • Susanne Kohl‎ et al.
  • Human molecular genetics‎
  • 2021‎

Cone dystrophies are a rare subgroup of inherited retinal dystrophies and hallmarked by color vision defects, low or decreasing visual acuity and central vision loss, nystagmus and photophobia. Applying genome-wide linkage analysis and array comparative genome hybridization, we identified a locus for autosomal dominant cone dystrophy on chromosome 16q12 in four independent multigeneration families. The locus is defined by duplications of variable size with a smallest region of overlap of 608 kb affecting the IRXB gene cluster and encompasses the genes IRX5 and IRX6. IRX5 and IRX6 belong to the Iroquois (Iro) protein family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissue in vertebrates, including the eye and the retina. All patients presented with a unique progressive cone dystrophy phenotype hallmarked by early tritanopic color vision defects. We propose that the disease underlies a misregulation of the IRXB gene cluster on chromosome 16q12 and demonstrate that overexpression of Irx5a and Irx6a, the two orthologous genes in zebrafish, results in visual impairment in 5-day-old zebrafish larvae.


A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.

  • Kuo-Yi Huang‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2015‎

In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.


Cell Biology of Spontaneous Persistent Epithelial Defects After Photorefractive Keratectomy in Rabbits.

  • Lycia Pedral Sampaio‎ et al.
  • Translational vision science & technology‎
  • 2023‎

To evaluate wound healing in rabbit corneas that developed a spontaneous persistent epithelial defect (PED) after photorefractive keratectomy (PRK).


Detecting Defects on Solid Wood Panels Based on an Improved SSD Algorithm.

  • Fenglong Ding‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

Wood is widely used in construction, the home, and art applications all over the world because of its good mechanical properties and aesthetic value. However, because the growth and preservation of wood are greatly affected by the environment, it often contains different types of defects that affect its performance and ornamental value. To solve the issues of high labor costs and low efficiency in the detection of wood defects, we used machine vision and deep learning methods in this work. A color charge-coupled device camera was used to collect the surface images of two types of wood from Akagi and Pinus sylvestris trees. A total of 500 images with a size of 200 × 200 pixels containing wood knots, dead knots, and checking defects were obtained. The transfer learning method was used to apply the single-shot multibox detector (SSD), a target detection algorithm and the DenseNet network was introduced to improve the algorithm. The mean average precision for detecting the three types of defects, live knots, dead knots and checking was 96.1%.


Mapping Visual Field Defects With fMRI - Impact of Approach and Experimental Conditions.

  • Gokulraj T Prabhakaran‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Current initiatives to restore vision emphasize the need for objective assessments of visual field (VF) defects as pursued with functional magnetic resonance imaging (fMRI) approaches. Here, we compared population receptive field (pRF) mapping-based VF reconstructions to an fMRI method that uses more robust visual stimulation (on-off block design) in combination with individualized anatomy-driven retinotopic atlas-information (atlas-based VF). We investigated participants with sizable peripheral VF-deficits due to advanced glaucoma (n = 4) or retinitis pigmentosa (RP; n = 2) and controls (n = 6) with simulated scotoma. We obtained (1) standard automated perimetry (SAP) data as reference VFs and 3T fMRI data for (2) pRF-mapping [8-direction bar stimulus, fixation color change task] and (3) block-design full-field stimulation [8-direction drifting contrast patterns during (a) passive viewing (PV) and (b) one-back-task (OBT; reporting successions of identical motion directions) to probe the impact of previously reported task-related unspecific visual cortex activations]. Correspondence measures between the SAP and fMRI-based VFs were accuracy, assisted by sensitivity and specificity. We found an accuracy of pRF-based VF from V1 in patients [median: 0.62] that was similar to previous reports and increased by adding V2 and V3 to the analysis [0.74]. In comparison to the pRF-based VF, equivalent accuracies were obtained for the atlas-based VF for both PV [0.67] and, unexpectedly, the OBT [0.59], where, however, unspecific cortical activations were reflected by a reduction in sensitivity [0.71 (PV) and 0.35 (OBT)]. In conclusion, in patients with peripheral VF-defects, we demonstrate that previous fMRI procedures to obtain VF-estimates might be enhanced by: (1) pooling V1-V3 to enhance accuracy; (2) reporting sensitivity and specificity measures to increase transparency of the VF-reconstruction metric; (3) applying atlas-based procedures, if pRF-based VFs are not available or difficult to obtain; and (4) giving, counter-intuitively, preference to PV. These findings are expected to provide guidance to overcome current limitations of translating fMRI-based methods to a clinical work-up.


Evaluating the interreader agreement and intrareader reproducibility of Visual Field Defects in Thyroid Eye Disease- Compressive Optic Neuropathy.

  • Aylin Garip Kuebler‎ et al.
  • Eye (London, England)‎
  • 2022‎

To categorize visual field (VF) defects according to Freitag and Tanking's (FT) classification in Thyroid Eye Disease-Compressive Optic Neuropathy (TED-CON) and evaluate the interreader agreement and intrareader reproducibility of the classification.


Ethambutol optic neuropathy in the extended anti-tubercular therapy regime: A systematic review.

  • Swapnali Sabhapandit‎ et al.
  • Indian journal of ophthalmology‎
  • 2023‎

The extended use of ethambutol beyond 2 months for treating tuberculosis has increased risk of optic neuropathy. We performed a systematic review of studies evaluating optic neuropathy in extended ethambutol use since 2010 and compared the outcome with a similar systematic review (1965-2010) by Ezer et al. Literature search was conducted in PubMed, Medline, EMBASE, and Cochrane databases. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Main outcome measures were visual acuity, color vision, visual field defects, optical coherence tomography (OCT), and visual evoked potential (VEP). The JBI Critical Appraisal Checklists were used for quality assessment. Twelve studies were selected (out of 639 studies) for analysis of ethambutol optic neuropathy. Visual acuity improvement after stopping ethambutol was statistically significant. Similar improvement was not noted for other outcome measures. On comparing the results of this review with those by Ezer et al., significant improvement was noted in visual acuity, color vision, and visual field defects. Moreover, more patients reported increased optic nerve toxicity, color vision defects, and visual field defects in the present review. Hence, we conclude that the extended use of ethambutol beyond 2 months results in significant optic nerve toxicity. Further randomized controlled trials with different populations are needed to understand the magnitude of this issue.


Role of a Dual Splicing and Amino Acid Code in Myopia, Cone Dysfunction and Cone Dystrophy Associated with L/M Opsin Interchange Mutations.

  • Scott H Greenwald‎ et al.
  • Translational vision science & technology‎
  • 2017‎

Human long (L) and middle (M) wavelength cone opsin genes are highly variable due to intermixing. Two L/M cone opsin interchange mutants, designated LIAVA and LVAVA, are associated with clinical diagnoses, including red-green color vision deficiency, blue cone monochromacy, cone degeneration, myopia, and Bornholm Eye Disease. Because the protein and splicing codes are carried by the same nucleotides, intermixing L and M genes can cause disease by affecting protein structure and splicing.


Expanding the Mutation Spectrum in ABCA4: Sixty Novel Disease Causing Variants and Their Associated Phenotype in a Large French Stargardt Cohort.

  • Marco Nassisi‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Here we report novel mutations in ABCA4 with the underlying phenotype in a large French cohort with autosomal recessive Stargardt disease. The DNA samples of 397 index subjects were analyzed in exons and flanking intronic regions of ABCA4 (NM_000350.2) by microarray analysis and direct Sanger sequencing. At the end of the screening, at least two likely pathogenic mutations were found in 302 patients (76.1%) while 95 remained unsolved: 40 (10.1%) with no variants identified, 52 (13.1%) with one heterozygous mutation, and 3 (0.7%) with at least one variant of uncertain significance (VUS). Sixty-three novel variants were identified in the cohort. Three of them were variants of uncertain significance. The other 60 mutations were classified as likely pathogenic or pathogenic, and were identified in 61 patients (15.4%). The majority of those were missense (55%) followed by frameshift and nonsense (30%), intronic (11.7%) variants, and in-frame deletions (3.3%). Only patients with variants never reported in literature were further analyzed herein. Recruited subjects underwent complete ophthalmic examination including best corrected visual acuity, kinetic and static perimetry, color vision test, full-field and multifocal electroretinography, color fundus photography, short-wavelength and near-infrared fundus autofluorescence imaging, and spectral domain optical coherence tomography. Clinical evaluation of each subject confirms the tendency that truncating mutations lead to a more severe phenotype with electroretinogram (ERG) impairment (p = 0.002) and an earlier age of onset (p = 0.037). Our study further expands the mutation spectrum in the exonic and flanking regions of ABCA4 underlying Stargardt disease.


Identification of a novel RPGR mutation associated with X-linked cone-rod dystrophy in a Chinese family.

  • Yafang Wang‎ et al.
  • BMC ophthalmology‎
  • 2021‎

Cone-rod dystrophy (CORD) is a group of inherited retinal dystrophies, characterized by decreased visual acuity, color vision defects, photophobia, and decreased sensitivity in the central visual field. Our study has identified a novel pathogenic variant associated with X-linked cone-rod dystrophy (XLCORD) in a Chinese family.


Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

  • Alex J Bartholomew‎ et al.
  • PloS one‎
  • 2016‎

Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.


Image-Processing-Based Low-Cost Fault Detection Solution for End-of-Line ECUs in Automotive Manufacturing.

  • Adrian Korodi‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

The manufacturing industry is continuously researching and developing strategies and solutions to increase product quality and to decrease production time and costs. The approach is always targeting more automated, traceable, and supervised production, minimizing the impact of the human factor. In the automotive industry, the Electronic Control Unit (ECU) manufacturing ends with complex testing, the End-of-Line (EoL) products being afterwards sent to client companies. This paper proposes an image-processing-based low-cost fault detection (IP-LC-FD) solution for the EoL ECUs, aiming for high-quality and fast detection. The IP-LC-FD solution approaches the problem of determining, on the manufacturing line, the correct mounting of the pins in the locations of each connector of the ECU module, respectively, other defects as missing or extra pins, damaged clips, or surface cracks. The IP-LC-FD system is a hardware-software structure, based on Raspberry Pi microcomputers, Pi cameras, respectively, Python and OpenCV environments. This paper presents the two main stages of the research, the experimental model, and the prototype. The rapid integration into the production line represented an important goal, meaning the accomplishment of the specific hard acceptance requirements regarding both performance and functionality. The solution was implemented and tested as an experimental model and prototype in a real industrial environment, proving excellent results.


The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells.

  • Greta Glover‎ et al.
  • Molecular vision‎
  • 2012‎

To characterize the expression pattern of cadherin 23 (cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D.


MFN1 augmentation prevents retinal degeneration in a Charcot-Marie-Tooth type 2A mouse model.

  • Saba Shahin‎ et al.
  • iScience‎
  • 2023‎

Charcot-Marie-Tooth disease type 2A (CMT2A), the most common inherited peripheral axonal neuropathy, is associated with more than 100 dominant mutations, including R94Q as the most abundant mutation in the Mitofusin2 (MFN2) gene. CMT2A is characterized by progressive motor and sensory loss, color-vision defects, and progressive loss of visual acuity. We used a well-established transgenic mouse model of CMT2A with R94Q mutation on MFN2 gene (MFN2 R94Q ) to investigate the functional and morphological changes in retina. We documented extensive vision loss due to photoreceptor degeneration, retinal ganglion cell and their axonal loss, retinal secondary neuronal and synaptic alternation, and Müller cell gliosis in the retina of MFN2 R94Q mice. Imbalanced MFN1/MFN2 ratio and dysregulated mitochondrial fusion/fission result in retinal degeneration via P62/LC3B-mediated mitophagy/autophagy in MFN2 R94Q mice. Finally, transgenic MFN1 augmentation (MFN2 R94Q :MFN1) rescued vision and retinal morphology to wild-type level via restoring homeostasis in mitochondrial MFN1/MFN2 ratio, fusion/fission cycle, and PINK1-dependent, Parkin-independent mitophagy.


Generation of two human induced pluripotent stem cell lines (ABi001-A and ABi002-A) from cone dystrophy with supernormal rod response patients caused by KCNV2 mutation.

  • Almaqdad Alsalloum‎ et al.
  • Stem cell research‎
  • 2023‎

Cone dystrophy with supernormal rod response (CDSRR) is associated with pathogenic variants of the KCNV2 gene that result in severe symptoms, including color vision defects, decreased visual acuity, and specific changes in electroretinogram responses. Two iPSC lines were obtained from two patients in the same family with different types of mutations in the KCNV2 gene. These lines could serve as a useful model for studying the pathogenetic mechanism and treatment development for CDSRR. PBMCs from donors have been reprogrammed into iPSC lines. Derived clones were characterized with mutation sequencing, analysis of common pluripotency-associated markers at the protein levels, and in vitro differentiation studies.


Novel OPN1LW/OPN1MW Exon 3 Haplotype-Associated Splicing Defect in Patients with X-Linked Cone Dysfunction.

  • Katarina Stingl‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Certain combinations of common variants in exon 3 of OPN1LW and OPN1MW, the genes encoding the apo-protein of the long- and middle-wavelength sensitive cone photoreceptor visual pigments in humans, induce splicing defects and have been associated with dyschromatopsia and cone dysfunction syndromes. Here we report the identification of a novel exon 3 haplotype, G-C-G-A-T-T-G-G (referring to nucleotide variants at cDNA positions c.453, c.457, c.465, c.511, c.513, c.521, c.532, and c.538) deduced to encode a pigment with the amino acid residues L-I-V-V-A at positions p.153, p.171, p.174, p.178, and p.180, in OPN1LW or OPN1MW or both in a series of seven patients from four families with cone dysfunction. Applying minigene assays for all observed exon 3 haplotypes in the patients, we demonstrated that the novel exon 3 haplotype L-I-V-V-A induces a strong but incomplete splicing defect with 3-5% of residual correctly spliced transcripts. Minigene splicing outcomes were similar in HEK293 cells and the human retinoblastoma cell line WERI-Rb1, the latter retaining a cone photoreceptor expression profile including endogenous OPN1LW and OPN1MW gene expression. Patients carrying the novel L-I-V-V-A haplotype presented with a mild form of Blue Cone Monochromacy or Bornholm Eye Disease-like phenotype with reduced visual acuity, reduced cone electroretinography responses, red-green color vision defects, and frequently with severe myopia.


Genetic Analysis of the Organization, Development, and Plasticity of Corneal Innervation in Mice.

  • Nacim Bouheraoua‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

The cornea has the densest sensory innervation of the body, originating primarily from neurons in the trigeminal ganglion. The basic principles of cornea nerve patterning have been established many years ago using classic neuroanatomical methods, such as immunocytochemistry and electrophysiology. Our understanding of the morphology and distribution of the sensory nerves in the skin has considerably progressed over the past few years through the generation and analysis of a variety of genetically modified mouse lines. Surprisingly, these lines were not used to study corneal axons. Here, we have screened a collection of transgenic and knockin mice (of both sexes) to select lines allowing the visualization and genetic manipulation of corneal nerves. We identified multiple lines, including some in which different types of corneal axons can be simultaneously observed with fluorescent proteins expressed in a combinatorial manner. We also provide the first description of the morphology and arborization of single corneal axons and identify three main types of branching pattern. We applied this genetic strategy to the analysis of corneal nerve development and plasticity. We provide direct evidence for a progressive reduction of the density of corneal innervation during aging. We also show that the semaphorin receptor neuropilin-1 acts cell-autonomously to control the development of corneal axons and that early axon guidance defects have long-term consequences on corneal innervation.SIGNIFICANCE STATEMENT We have screened a collection of transgenic and knockin mice and identify lines allowing the visualization and genetic manipulation of corneal nerves. We provide the first description of the arborization pattern of single corneal axons. We also present applications of this genetic strategy to the analysis of corneal nerve development and remodeling during aging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: