Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 133 papers

A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics.

  • Alma Osmanovic‎ et al.
  • Journal of neurology‎
  • 2022‎

Recent evidence points toward a role of the small ubiquitin-like modifier (SUMO) system, including SUMO4, in protecting from stress insults and neurodegeneration, such as the progressive motor neuron disease amyotrophic lateral sclerosis (ALS), e.g., by regulating stress granule (SG) dynamics. Here, we investigated whether SUMO4 variants play a role in ALS pathogenesis.


Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes.

  • Greco Hernández‎ et al.
  • Nucleic acids research‎
  • 2024‎

mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.


Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript.

  • Simon Höllerer‎ et al.
  • Nucleic acids research‎
  • 2023‎

Translation is a key determinant of gene expression and an important biotechnological engineering target. In bacteria, 5'-untranslated region (5'-UTR) and coding sequence (CDS) are well-known mRNA parts controlling translation and thus cellular protein levels. However, the complex interaction of 5'-UTR and CDS has so far only been studied for few sequences leading to non-generalisable and partly contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 million 5'-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of various sequence determinants of translation. We find that 5'-UTR and CDS individually account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with different synonymous codons. Moreover, the obtained large-scale data provide clear experimental evidence for a base-pairing interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our study highlights the indispensability of ultradeep sequence-function mapping to accurately determine the contribution of parts and phenomena involved in gene regulation.


Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA.

  • Takayuki Katoh‎ et al.
  • Nucleic acids research‎
  • 2023‎

Translation initiation using noncanonical initiator substrates with poor peptidyl donor activities, such as N-acetyl-l-proline (AcPro), induces the N-terminal drop-off-reinitiation event. Thereby, the initiator tRNA drops-off from the ribosome and the translation reinitiates from the second amino acid to yield a truncated peptide lacking the N-terminal initiator substrate. In order to suppress this event for the synthesis of full-length peptides, here we have devised a chimeric initiator tRNA, referred to as tRNAiniP, whose D-arm comprises a recognition motif for EF-P, an elongation factor that accelerates peptide bond formation. We have shown that the use of tRNAiniP and EF-P enhances the incorporation of not only AcPro but also d-amino, β-amino and γ-amino acids at the N-terminus. By optimizing the translation conditions, e.g. concentrations of translation factors, codon sequence and Shine-Dalgarno sequence, we could achieve complete suppression of the N-terminal drop-off-reinitiation for the exotic amino acids and enhance the expression level of full-length peptide up to 1000-fold compared with the use of the ordinary translation conditions.


eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B.

  • Eunah Kim‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2018‎

The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.


Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA.

  • Marie Naveau‎ et al.
  • Nucleic acids research‎
  • 2013‎

Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2-GDPNP-tRNA complex.


Structural changes enable start codon recognition by the eukaryotic translation initiation complex.

  • Tanweer Hussain‎ et al.
  • Cell‎
  • 2014‎

During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2?, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon.


Cryo-EM study of start codon selection during archaeal translation initiation.

  • Pierre-Damien Coureux‎ et al.
  • Nature communications‎
  • 2016‎

Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2.


GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene.

  • A Dubot‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

A maternally inherited and practically homoplasmic mitochondrial (mtDNA) mutation, 8527A>G, changing the initiation codon AUG into GUG, normally coding for a valine, was observed in the ATP6 gene encoding the ATPase subunit a. No alternate Met codon could replace the normal translational initiator. The patient harboring this mutation exhibited clinical symptoms suggesting a mitochondrial disease but his mother who carried the same mtDNA mutation was healthy. The mutation was absent from 100 controls and occurred once amongst 44 patients suspected of Leber Hereditary Optic Neuropathy (LHON) but devoid of typical LHON mutations. In patient fibroblasts, no effect of 8527A>G mutation could be demonstrated on the biosynthesis of mtDNA-encoded proteins, on size and the content of ATPase subunit a, on ATP hydrolysis and on mitochondrial membrane potential. In addition, ATP synthesis was barely decreased. Therefore, GUG is a functional initiation codon for the human ATP6 gene.


Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom.

  • Edward W J Wallace‎ et al.
  • Nucleic acids research‎
  • 2020‎

Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


The 5' untranslated region of the anti-apoptotic protein Survivin contains an inhibitory upstream AUG codon.

  • Christian E Palavecino‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Survivin (BIRC5) is an anti-apoptotic protein that is important in cancer. Mechanisms responsible for controlling Survivin levels in cells include transcriptional regulation and modulation of protein stability via post-translational modifications; however to date, translational control has been poorly studied. Here, we focused particularly on the primary control elements present in the Survivin 5' untranslated region (5'UTR). Bioinformatic analysis of ribosome occupancy on the Survivin 5'UTR revealed the presence of elongating ribosomes upstream of the canonical initiator AUG, suggesting an alternative upstream initiator AUG (uAUG) might exist. This uAUG was found out-of-frame at position -71 and appeared as a conserved element in mammals. RACE analysis revealed different transcriptional start sites for BIRC5, which indicated that translational control by this uAUG is restricted to longer 5'UTR variants. We studied the activity of the uAUG in different cell types by cloning the Survivin 5'UTR DNA sequence (wild-type and mutated variants) upstream of renilla luciferase (RLuc) into a pcDNA3 plasmid. Changes in RLuc activity were determined by luminescence assays and Western blotting. Results showed that when this uAUG was mutated to AUU or AGG in the cloned Survivin 5'UTR, RLuc activity was significantly increased. Similar results were obtained when uAUG was positioned inframe with the RLuc initiator AUG. Immunodetection of Renilla (35 kDa) by Western blotting revealed the presence of a second band (37 kDa approximately) in cells transfected with the Inframe reporter constructs, indicating that the uAUG was functional in our experimental conditions. In conclusion, our experimental data demonstrate the presence of an alternative and inhibitory initiator uAUG in the Survivin 5' UTR. This inhibitory uAUG may help understanding how Survivin expression is downregulated under physiological or pathological conditions.


Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection.

  • Hadar Sinvani‎ et al.
  • Cell metabolism‎
  • 2015‎

Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.


Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis.

  • Ilya M Terenin‎ et al.
  • Nucleic acids research‎
  • 2016‎

During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon-anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining.


Translation of the F protein of hepatitis C virus is initiated at a non-AUG codon in a +1 reading frame relative to the polyprotein.

  • Martin Baril‎ et al.
  • Nucleic acids research‎
  • 2005‎

The hepatitis C virus (HCV) genome contains an internal ribosome entry site (IRES) followed by a large open reading frame coding for a polyprotein that is cleaved into 10 proteins. An additional HCV protein, the F protein, was recently suggested to result from a +1 frameshift by a minority of ribosomes that initiated translation at the HCV AUG initiator codon of the polyprotein. In the present study, we reassessed the mechanism accounting for the synthesis of the F protein by measuring the expression in cultured cells of a luciferase reporter gene with an insertion encompassing the IRES plus the beginning of the HCV-coding region preceding the luciferase-coding sequence. The insertion was such that luciferase expression was either in the +1 reading frame relative to the HCV AUG initiator codon, mimicking the expression of the F protein, or in-frame with this AUG, mimicking the expression of the polyprotein. Introduction of a stop codon at various positions in-frame with the AUG initiator codon and substitution of this AUG with UAC inhibited luciferase expression in the 0 reading frame but not in the +1 reading frame, ruling out that the synthesis of the F protein results from a +1 frameshift. Introduction of a stop codon at various positions in the +1 reading frame identified the codon overlapping codon 26 of the polyprotein in the +1 reading frame as the translation start site for the F protein. This codon 26(+1) is either GUG or GCG in the viral variants. Expression of the F protein strongly increased when codon 26(+1) was replaced with AUG, or when its context was mutated into an optimal Kozak context, but was severely decreased in the presence of low concentrations of edeine. These observations are consistent with a Met-tRNA(i)-dependent initiation of translation at a non-AUG codon for the synthesis of the F protein.


The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons.

  • Yann Bilbille‎ et al.
  • Journal of molecular biology‎
  • 2011‎

Human mitochondrial mRNAs utilize the universal AUG and the unconventional isoleucine AUA codons for methionine. In contrast to translation in the cytoplasm, human mitochondria use one tRNA, hmtRNA(Met)(CAU), to read AUG and AUA codons at both the peptidyl- (P-), and aminoacyl- (A-) sites of the ribosome. The hmtRNA(Met)(CAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position 34 (f(5)C(34)), and a cytidine substituting for the invariant uridine at position 33 of the canonical U-turn in tRNAs. The structure of the tRNA anticodon stem and loop domain (hmtASL(Met)(CAU)), determined by NMR restrained molecular modeling, revealed how the f(5)C(34) modification facilitates the decoding of AUA at the P- and the A-sites. The f(5)C(34) defined a reduced conformational space for the nucleoside, in what appears to have restricted the conformational dynamics of the anticodon bases of the modified hmtASL(Met)(CAU). The hmtASL(Met)(CAU) exhibited a C-turn conformation that has some characteristics of the U-turn motif. Codon binding studies with both Escherichia coli and bovine mitochondrial ribosomes revealed that the f(5)C(34) facilitates AUA binding in the A-site and suggested that the modification favorably alters the ASL binding kinetics. Mitochondrial translation by many organisms, including humans, sometimes initiates with the universal isoleucine codons AUU and AUC. The f(5)C(34) enabled P-site codon binding to these normally isoleucine codons. Thus, the physicochemical properties of this one modification, f(5)C(34), expand codon recognition from the traditional AUG to the non-traditional, synonymous codons AUU and AUC as well as AUA, in the reassignment of universal codons in the mitochondria.


Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency.

  • Kevin A Strauss‎ et al.
  • Molecular genetics and metabolism‎
  • 2007‎

Over a four-year period, we collected clinical and biochemical data from five Amish children who were homozygous for missense mutations in 5,10-methylenetetrahydrofolate reductase (MTHFR c.1129C>T). The four oldest patients had irreversible brain damage prior to diagnosis. The youngest child, diagnosed and started on betaine therapy as a newborn, is healthy at her present age of three years. We compared biochemical data among four groups: 16 control subjects, eight heterozygous parents, and five affected children (for the latter group, both before and during treatment with betaine anhydrous). Plasma amino acid concentrations were used to estimate changes in cerebral methionine uptake resulting from betaine therapy. In all affected children, treatment with betaine (534+/-222 mg/kg/day) increased plasma S-adenosylmethionine, improved markers of tissue methyltransferase activity, and resulted in a threefold increase of calculated brain methionine uptake. Betaine therapy did not normalize plasma total homocysteine, nor did it correct cerebral 5-methyltetrahydrofolate deficiency. We conclude that when the 5-methyltetrahydrofolate content of brain tissue is low, dietary betaine sufficient to increase brain methionine uptake may compensate for impaired cerebral methionine recycling. To effectively support the metabolic requirements of rapid brain growth, a large dose of betaine should be started early in life.


Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation.

  • Tanweer Hussain‎ et al.
  • Cell‎
  • 2016‎

In bacterial translational initiation, three initiation factors (IFs 1-3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1-3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNA(fMet)) into the P site for start codon recognition.


Conformational selection of translation initiation factor 3 signals proper substrate selection.

  • Margaret M Elvekrog‎ et al.
  • Nature structural & molecular biology‎
  • 2013‎

During translation, initiation factor 3 (IF3) binds to the small (30S) ribosomal subunit and regulates the fidelity with which the initiator tRNA and mRNA start codon substrates are selected into the 30S initiation complex (30S IC). The molecular mechanism through which IF3 promotes the recognition and signaling of correct substrate selection, however, remains poorly defined. Using single-molecule fluorescence resonance energy transfer, we show that 30S IC-bound Escherichia coli IF3 exists in a dynamic equilibrium between at least three conformations. We found that recognition of a proper anticodon-codon interaction between initiator tRNA and the start codon within a completely assembled 30S IC selectively shifts this equilibrium toward a single conformation of IF3. Our results strongly support a conformational selection model in which the conformation of IF3 that is selectively stabilized within a completely and correctly assembled 30S IC facilitates further progress along the initiation pathway.


Living related versus deceased donor liver transplantation for maple syrup urine disease.

  • Flavia Feier‎ et al.
  • Molecular genetics and metabolism‎
  • 2016‎

Maple syrup urine disease (MSUD) is an inherited disorder of branched chain ketoacid (BCKA) oxidation associated with episodic and chronic brain disease. Transplantation of liver from an unrelated deceased donor restores 9-13% whole-body BCKA oxidation capacity and stabilizes MSUD. Recent reports document encouraging short-term outcomes for MSUD patients who received a liver segment from mutation heterozygous living related donors (LRDT). To investigate effects of living related versus deceased unrelated grafts, we studied four Brazilian MSUD patients treated with LRDT who were followed for a mean 19 ± 12 postoperative months, and compared metabolic and clinical outcomes to 37 classical MSUD patients treated with deceased donor transplant. Patient and graft survival for LRDT were 100%. Three of 4 MSUD livers were successfully domino transplanted into non-MSUD subjects. Following LRDT, all subjects resumed a protein-unrestricted diet as mean plasma leucine decreased from 224 ± 306 μM to 143 ± 44 μM and allo-isoleucine decreased 91%. We observed no episodes of hyperleucinemia during 80 aggregate postoperative patient-months. Mean plasma leucine:isoleucine:valine concentration ratios were ~2:1:4 after deceased donor transplant compared to ~1:1:1.5 following LRDT, resulting in differences of predicted cerebral amino acid uptake. Mutant heterozygous liver segments effectively maintain steady-state BCAA and BCKA homeostasis on an unrestricted diet and during most catabolic states, but might have different metabolic effects than grafts from unrelated deceased donors. Neither living related nor deceased donor transplant affords complete protection from metabolic intoxication, but both strategies represent viable alternatives to nutritional management.


Remission of Inflammatory Bowel Disease in Glucose-6-Phosphatase 3 Deficiency by Allogeneic Haematopoietic Stem Cell Transplantation.

  • Chrissy Bolton‎ et al.
  • Journal of Crohn's & colitis‎
  • 2020‎

Mendelian disorders in glucose-6-phosphate metabolism can present with inflammatory bowel disease [IBD]. Using whole genome sequencing we identified a homozygous variant in the glucose-6-phosphatase G6PC3 gene [c.911dupC; p.Q305fs*82] in an adult patient with congenital neutropenia, lymphopenia and childhood-onset, therapy-refractory Crohn's disease. Because G6PC3 is expressed in several haematopoietic and non-haematopoietic cells it was unclear whether allogeneic stem cell transplantation [HSCT] would benefit this patient with intestinal inflammation. We show that HSCT resolves G6PC3-associated immunodeficiency and the Crohn's disease phenotype. It illustrates how even in adulthood, next-generation sequencing can have a significant impact on clinical practice and healthcare utilization in patients with immunodeficiency and monogenic IBD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: