Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 10,902 papers

Searching for SNPs with cloud computing.

  • Ben Langmead‎ et al.
  • Genome biology‎
  • 2009‎

As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from http://bowtie-bio.sourceforge.net/crossbow/.


Bioinformatics on the cloud computing platform Azure.

  • Hugh P Shanahan‎ et al.
  • PloS one‎
  • 2014‎

We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development.


LSTrAP-Cloud: A User-Friendly Cloud Computing Pipeline to Infer Coexpression Networks.

  • Qiao Wen Tan‎ et al.
  • Genes‎
  • 2020‎

As genomes become more and more available, gene function prediction presents itself as one of the major hurdles in our quest to extract meaningful information on the biological processes genes participate in. In order to facilitate gene function prediction, we show how our user-friendly pipeline, the Large-Scale Transcriptomic Analysis Pipeline in Cloud (LSTrAP-Cloud), can be useful in helping biologists make a shortlist of genes involved in a biological process that they might be interested in, by using a single gene of interest as bait. The LSTrAP-Cloud is based on Google Colaboratory, and provides user-friendly tools that process quality-control RNA sequencing data streamed from the European Nucleotide Archive. The LSTRAP-Cloud outputs a gene coexpression network that can be used to identify functionally related genes for any organism with a sequenced genome and publicly available RNA sequencing data. Here, we used the biosynthesis pathway of Nicotiana tabacum as a case study to demonstrate how enzymes, transporters, and transcription factors involved in the synthesis, transport, and regulation of nicotine can be identified using our pipeline.


Cost-Effective Resources for Computing Approximation Queries in Mobile Cloud Computing Infrastructure.

  • Arun Kumar Sangaiah‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Answering a query through a peer-to-peer database presents one of the greatest challenges due to the high cost and time required to obtain a comprehensive response. Consequently, these systems were primarily designed to handle approximation queries. In our research, the primary objective was to develop an intelligent system capable of responding to approximate set-value inquiries. This paper explores the use of particle optimization to enhance the system's intelligence. In contrast to previous studies, our proposed method avoids the use of sampling. Despite the utilization of the best sampling methods, there remains a possibility of error, making it difficult to guarantee accuracy. Nonetheless, achieving a certain degree of accuracy is crucial in handling approximate queries. Various factors influence the accuracy of sampling procedures. The results of our studies indicate that the suggested method has demonstrated improvements in terms of the number of queries issued, the number of peers examined, and its execution time, which is significantly faster than the flood approach. Answering queries poses one of the most arduous challenges in peer-to-peer databases, as obtaining a complete answer is both costly and time-consuming. Consequently, approximation queries have been adopted as a solution in these systems. Our research evaluated several methods, including flood algorithms, parallel diffusion algorithms, and ISM algorithms. When it comes to query transmission, the proposed method exhibits superior cost-effectiveness and execution times.


Security challenges and solutions using healthcare cloud computing.

  • Mohammad Mehrtak‎ et al.
  • Journal of medicine and life‎
  • 2021‎

Cloud computing is among the most beneficial solutions to digital problems. Security is one of the focal issues in cloud computing technology, and this study aims at investigating security issues of cloud computing and their probable solutions. A systematic review was performed using Scopus, Pubmed, Science Direct, and Web of Science databases. Once the title and abstract were evaluated, the quality of studies was assessed in order to choose the most relevant according to exclusion and inclusion criteria. Then, the full texts of studies selected were read thoroughly to extract the necessary results. According to the review, data security, availability, and integrity, as well as information confidentiality and network security, were the major challenges in cloud security. Further, data encryption, authentication, and classification, besides application programming interfaces (API), were security solutions to cloud infrastructure. Data encryption could be applied to store and retrieve data from the cloud in order to provide secure communication. Besides, several central challenges, which make the cloud security engineering process problematic, have been considered in this study.


Cloud Computing Enabled Big Multi-Omics Data Analytics.

  • Saraswati Koppad‎ et al.
  • Bioinformatics and biology insights‎
  • 2021‎

High-throughput experiments enable researchers to explore complex multifactorial diseases through large-scale analysis of omics data. Challenges for such high-dimensional data sets include storage, analyses, and sharing. Recent innovations in computational technologies and approaches, especially in cloud computing, offer a promising, low-cost, and highly flexible solution in the bioinformatics domain. Cloud computing is rapidly proving increasingly useful in molecular modeling, omics data analytics (eg, RNA sequencing, metabolomics, or proteomics data sets), and for the integration, analysis, and interpretation of phenotypic data. We review the adoption of advanced cloud-based and big data technologies for processing and analyzing omics data and provide insights into state-of-the-art cloud bioinformatics applications.


A scoping review of cloud computing in healthcare.

  • Lena Griebel‎ et al.
  • BMC medical informatics and decision making‎
  • 2015‎

Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain.


The case for cloud computing in genome informatics.

  • Lincoln D Stein‎
  • Genome biology‎
  • 2010‎

With DNA sequencing now getting cheaper more quickly than data storage or computation, the time may have come for genome informatics to migrate to the cloud.


Bioinformatics Workflows With NoSQL Database in Cloud Computing.

  • Polyane Wercelens‎ et al.
  • Evolutionary bioinformatics online‎
  • 2019‎

Scientific workflows can be understood as arrangements of managed activities executed by different processing entities. It is a regular Bioinformatics approach applying workflows to solve problems in Molecular Biology, notably those related to sequence analyses. Due to the nature of the raw data and the in silico environment of Molecular Biology experiments, apart from the research subject, 2 practical and closely related problems have been studied: reproducibility and computational environment. When aiming to enhance the reproducibility of Bioinformatics experiments, various aspects should be considered. The reproducibility requirements comprise the data provenance, which enables the acquisition of knowledge about the trajectory of data over a defined workflow, the settings of the programs, and the entire computational environment. Cloud computing is a booming alternative that can provide this computational environment, hiding technical details, and delivering a more affordable, accessible, and configurable on-demand environment for researchers. Considering this specific scenario, we proposed a solution to improve the reproducibility of Bioinformatics workflows in a cloud computing environment using both Infrastructure as a Service (IaaS) and Not only SQL (NoSQL) database systems. To meet the goal, we have built 3 typical Bioinformatics workflows and ran them on 1 private and 2 public clouds, using different types of NoSQL database systems to persist the provenance data according to the Provenance Data Model (PROV-DM). We present here the results and a guide for the deployment of a cloud environment for Bioinformatics exploring the characteristics of various NoSQL database systems to persist provenance data.


Cloud computing for protein-ligand binding site comparison.

  • Che-Lun Hung‎ et al.
  • BioMed research international‎
  • 2013‎

The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.


Exploring the factors influencing the cloud computing adoption: a systematic study on cloud migration.

  • Rashmi Rai‎ et al.
  • SpringerPlus‎
  • 2015‎

Today, most of the organizations trust on their age old legacy applications, to support their business-critical systems. However, there are several critical concerns, as maintainability and scalability issues, associated with the legacy system. In this background, cloud services offer a more agile and cost effective platform, to support business applications and IT infrastructure. As the adoption of cloud services has been increasing recently and so has been the academic research in cloud migration. However, there is a genuine need of secondary study to further strengthen this research. The primary objective of this paper is to scientifically and systematically identify, categorize and compare the existing research work in the area of legacy to cloud migration. The paper has also endeavored to consolidate the research on Security issues, which is prime factor hindering the adoption of cloud through classifying the studies on secure cloud migration. SLR (Systematic Literature Review) of thirty selected papers, published from 2009 to 2014 was conducted to properly understand the nuances of the security framework. To categorize the selected studies, authors have proposed a conceptual model for cloud migration which has resulted in a resource base of existing solutions for cloud migration. This study concludes that cloud migration research is in seminal stage but simultaneously it is also evolving and maturing, with increasing participation from academics and industry alike. The paper also identifies the need for a secure migration model, which can fortify organization's trust into cloud migration and facilitate necessary tool support to automate the migration process.


Genomic cloud computing: legal and ethical points to consider.

  • Edward S Dove‎ et al.
  • European journal of human genetics : EJHG‎
  • 2015‎

The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.


An expert fitness diagnosis system based on elastic cloud computing.

  • Kevin C Tseng‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.


Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing.

  • Javier Ramírez De La Pinta‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2017‎

In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.


Benchmarking undedicated cloud computing providers for analysis of genomic datasets.

  • Seyhan Yazar‎ et al.
  • PloS one‎
  • 2014‎

A major bottleneck in biological discovery is now emerging at the computational level. Cloud computing offers a dynamic means whereby small and medium-sized laboratories can rapidly adjust their computational capacity. We benchmarked two established cloud computing services, Amazon Web Services Elastic MapReduce (EMR) on Amazon EC2 instances and Google Compute Engine (GCE), using publicly available genomic datasets (E.coli CC102 strain and a Han Chinese male genome) and a standard bioinformatic pipeline on a Hadoop-based platform. Wall-clock time for complete assembly differed by 52.9% (95% CI: 27.5-78.2) for E.coli and 53.5% (95% CI: 34.4-72.6) for human genome, with GCE being more efficient than EMR. The cost of running this experiment on EMR and GCE differed significantly, with the costs on EMR being 257.3% (95% CI: 211.5-303.1) and 173.9% (95% CI: 134.6-213.1) more expensive for E.coli and human assemblies respectively. Thus, GCE was found to outperform EMR both in terms of cost and wall-clock time. Our findings confirm that cloud computing is an efficient and potentially cost-effective alternative for analysis of large genomic datasets. In addition to releasing our cost-effectiveness comparison, we present available ready-to-use scripts for establishing Hadoop instances with Ganglia monitoring on EC2 or GCE.


Distributed gene clinical decision support system based on cloud computing.

  • Bo Xu‎ et al.
  • BMC medical genomics‎
  • 2018‎

The clinical decision support system can effectively break the limitations of doctors' knowledge and reduce the possibility of misdiagnosis to enhance health care. The traditional genetic data storage and analysis methods based on stand-alone environment are hard to meet the computational requirements with the rapid genetic data growth for the limited scalability.


Cloud computing approaches for prediction of ligand binding poses and pathways.

  • Morgan Lawrenz‎ et al.
  • Scientific reports‎
  • 2015‎

We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.


Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

  • Wen-Hwa Liao‎ et al.
  • SpringerPlus‎
  • 2016‎

Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.


Organizing and running bioinformatics hackathons within Africa: The H3ABioNet cloud computing experience.

  • Azza E Ahmed‎ et al.
  • AAS open research‎
  • 2018‎

The need for portable and reproducible genomics analysis pipelines is growing globally as well as in Africa, especially with the growth of collaborative projects like the Human Health and Heredity in Africa Consortium (H3Africa). The Pan-African H3Africa Bioinformatics Network (H3ABioNet) recognized the need for portable, reproducible pipelines adapted to heterogeneous computing environments, and for the nurturing of technical expertise in workflow languages and containerization technologies. Building on the network's Standard Operating Procedures (SOPs) for common genomic analyses, H3ABioNet arranged its first Cloud Computing and Reproducible Workflows Hackathon in 2016, with the purpose of translating those SOPs into analysis pipelines able to run on heterogeneous computing environments and meeting the needs of H3Africa research projects. This paper describes the preparations for this hackathon and reflects upon the lessons learned about its impact on building the technical and scientific expertise of African researchers. The workflows developed were made publicly available in GitHub repositories and deposited as container images on Quay.io.


Yabi: An online research environment for grid, high performance and cloud computing.

  • Adam A Hunter‎ et al.
  • Source code for biology and medicine‎
  • 2012‎

There is a significant demand for creating pipelines or workflows in the life science discipline that chain a number of discrete compute and data intensive analysis tasks into sophisticated analysis procedures. This need has led to the development of general as well as domain-specific workflow environments that are either complex desktop applications or Internet-based applications. Complexities can arise when configuring these applications in heterogeneous compute and storage environments if the execution and data access models are not designed appropriately. These complexities manifest themselves through limited access to available HPC resources, significant overhead required to configure tools and inability for users to simply manage files across heterogenous HPC storage infrastructure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: