Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 84 papers

Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors.

  • Hana Kubová‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

γ-aminobutyric acid (GABA) pathways play an important role in neuronal circuitry formation during early postnatal development. Our previous studies revealed an increased risk for adverse neurodevelopmental consequences in animals exposed to benzodiazepines, which enhance GABA inhibition via GABAA receptors. We reported that administration of the benzodiazepine clonazepam (CZP) during postnatal days 7-11 resulted in permanent behavioral alterations. However, the mechanisms underlying these changes are unknown. We hypothesized that early CZP exposure modifies development of glutamatergic receptors and their composition due to the tight developmental link between GABAergic functions and maturation of glutamatergic signaling. These changes may alter excitatory synapses, as well as neuronal connectivity and function of the neural network. We used quantitative real-time PCR and quantitative autoradiography to examine changes in NMDA and AMPA receptor composition and binding in response to CZP (1 mg/kg/day) administration for five consecutive days, beginning on P7. Brains were collected 48 h, 1 week, or 60 days after treatment cessation, and mRNA subunit expression was assessed in the hippocampus and sensorimotor cortex. A separate group of animals was used to determine binding to NMDA in different brain regions. Patterns of CZP-induced alterations in subunit mRNA expression were dependent on brain structure, interval after CZP cessation, and receptor subunit type. In the hippocampus, upregulation of GluN1, GluN3, and GluR2 subunit mRNA was observed at the 48-h interval, and GluN2A and GluR1 mRNA expression levels were higher 1 week after CZP cessation compared to controls, while GluN2B was downregulated. CZP exposure increased GluN3 and GluR2 subunit mRNA expression levels in the sensorimotor cortex 48 h after treatment cessation. GluA3 was higher 1 week after the CZP exposure, and GluN2A and GluA4 mRNA were significantly upregulated 2 months later. Expression of other subunits was not significantly different from that of the controls. NMDA receptor binding increased 1 week after the end of exposure in most hippocampal and cortical areas, including the sensorimotor cortex at the 48-h interval. CZP exposure decreased NMDA receptor binding in most evaluated hippocampal and cortical areas 2 months after the end of administration. Overall, early CZP exposure likely results in long-term glutamatergic receptor modulation that may affect synaptic development and function, potentially causing behavioral impairment.


Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors.

  • Hana Kubová‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7-11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. In the hippocampus, the α4 subunit was downregulated after the 2-month interval. Changes in receptor binding were highly dependent on the receptor type, the interval after treatment cessation, and the brain structure. GABAA receptor binding was increased in almost all of the brain structures after the 48-h interval. BZD-binding was decreased in many brain structures involved in the neuronal networks associated with emotional behavior, anxiety, and cognitive functions after the 2-month interval. Binding of the GABAB receptors changed depending on the interval and brain structure. Overall, the described changes may affect both synaptic development and functioning and may potentially cause behavioral impairment.


Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery.

  • Marzia Cirri‎ et al.
  • Pharmaceutics‎
  • 2021‎

A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated β-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.


Early onset epileptic encephalopathy with a novel GABRB3 mutation treated effectively with clonazepam: A case report.

  • Yi Zhang‎ et al.
  • Medicine‎
  • 2017‎

Early onset epileptic encephalopathy (EOEE) is one of the most serious early onset epilepsies. The etiopathology of this condition remains unclear, and recent evidence indicated that gamma-aminobutyric acid (GABA) A receptor, subunit beta 3 (GABRB3) gene mutations might be associated with EOEE. Furthermore, the therapeutic regimen for EOEE has yet to be well elucidated. Herein, we reported the clinical and genetic features of a case with GABRB3-related EOEE.


Combined Antiseizure Efficacy of Cannabidiol and Clonazepam in a Conditional Mouse Model of Dravet Syndrome.

  • Shu-Hui Chuang‎ et al.
  • Journal of experimental neurology‎
  • 2021‎

Dravet Syndrome (DS) is a severe childhood epilepsy caused by heterozygous loss-of-function mutations in the SCN1A gene encoding brain type-I voltage-gated sodium channel Nav1.1. DS is a devastating disease that typically begins at six to nine months of age. Symptoms include recurrent intractable seizures and premature death with severe neuropsychiatric comorbidities, including hyperactivity, sleep disorder, anxiety-like behaviors, impaired social interactions, and cognitive deficits. There is an urgent unmet need for therapeutic approaches that control and cure DS, as available therapeutic interventions have poor efficacy, intolerance, or other side effects. Here we investigated the therapeutic potential of combining the benzodiazepine clonazepam (CLZ) with the nonpsychotropic phytocannabinoid cannabidiol (CBD) against thermally induced febrile seizures in a conditional mouse model of DS. Our results show that a low dose of CLZ alone or combined with CBD elevated the threshold temperature for the thermal induction of seizures. Combination of CLZ with CBD significantly reduced seizure duration compared to the vehicle or CLZ alone, but did not affect seizure severity, indicating potential additive actions of CLZ and CBD on the duration of seizures. Our findings provide preclinical evidence supporting combination therapy of CLZ and CBD for treatment of febrile seizures in DS.


Clonazepam for probable REM sleep behavior disorder in Parkinson's disease: A randomized placebo-controlled trial.

  • Chaewon Shin‎ et al.
  • Journal of the neurological sciences‎
  • 2019‎

Clonazepam is considered to be a first-line treatment for rapid eye movement sleep-related behavior disorder (RBD) in Parkinson's disease (PD). The purpose of this study was to determine the short-term efficacy and safety of clonazepam for the treatment of probable RBD (pRBD) in patients with PD.


Population pharmacokinetics of clonazepam in saliva and plasma: Steps towards noninvasive pharmacokinetic studies in vulnerable populations.

  • Matthijs D Kruizinga‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Traditional studies focusing on the relationship between pharmacokinetics (PK) and pharmacodynamics necessitate blood draws, which are too invasive for children or other vulnerable populations. A potential solution is to use noninvasive sampling matrices, such as saliva. The aim of this study was to develop a population PK model describing the relationship between plasma and saliva clonazepam kinetics and assess whether the model can be used to determine trough plasma concentrations based on saliva samples.


Schwann cell autophagy induced by SAHA, 17-AAG, or clonazepam can reduce bortezomib-induced peripheral neuropathy.

  • T Watanabe‎ et al.
  • British journal of cancer‎
  • 2010‎

The proteasome inhibitor bortezomib has improved the survival of patients with multiple myeloma but bortezomib-induced peripheral neuropathy (BiPN) has emerged as a serious potential complication of this therapy. Animal studies suggest that bortezomib predominantly causes pathological changes in Schwann cells. A tractable system to evaluate combination drugs for use with bortezomib is essential to enable continuing clinical benefit from this drug.


Comparing the Effects of Acupressure and Clonazepam Tablets on Sleep Quality of Hemodialysis Patients: A Randomized Controlled Trial.

  • Mansooreh Ezzati‎ et al.
  • Iranian journal of psychiatry‎
  • 2023‎

Objective: The current study aimed to compare the impact of acupressure and clonazepam tablets on the quality of sleep in hemodialysis patients in light of the rising prevalence of chronic kidney disease (CKD), the high prevalence of sleep disturbance in these patients, and the side effects of hypnotic drugs. Method : A total of 60 patients were selected for this randomized, controlled clinical trial and randomly assigned to two groups. For two weeks during the researcher's evening shift, one group received acupressure (six spots bilaterally for three minutes each day). The opposing group was administered clonazepam tablets (0.5 mg) for two weeks. The Pittsburgh Sleep Quality Index (PSQI), which measures sleep quality, was used to compare sleep in the two groups before and after the intervention. Results: There was no statistically significant difference between the two groups prior to the intervention (P = 0.75) in terms of the mean pre-intervention PSQI scores for the acupressure and clonazepam groups, which were 15.83 ± 1.51 and 16.17 ± 0.91, respectively. However, the average PSQI scores after the intervention in the clonazepam and acupressure groups were 13.25 ± 2.88 and 8.97 ± 4.29, respectively, indicating a statistically significant difference (P < 0.0001). Both the acupressure and the clonazepam groups showed improvements in their post-intervention sleep quality among the patients. However, when the percentage changed in the mean scores of the total score and all of the PSQI components were calculated for each group, it became clear that acupressure was more effective at enhancing sleep than clonazepam tablets. Conclusion: The findings of the present investigation demonstrate that acupressure has a greater impact on patients' sleep quality compared to clonazepam tablets. Depending on the circumstances, acupressure can be used as a simple, safe, and non-drug way to enhance hemodialysis patients' quality of sleep.


Differential effects of alprazolam and clonazepam on the immune system and blood vessels of non-stressed and stressed adult male albino rats.

  • Ghada E Elmesallamy‎ et al.
  • Interdisciplinary toxicology‎
  • 2011‎

Benzodiazepines belongs to one of the most commonly used anxiolytic and anticonvulsant drugs in the world. Full description of toxic effects on different organs is lacking for nearly all the current benzodiazepines. The aim of the current work was to study the immunologic and vascular changes induced by sub-chronic administration of alprazolam and clonazepam in non-stressed and stressed adult male albino rats. Forty-two adult male albino rats were divided into 6 groups (I): (Ia) Negative control rats, (Ib): Positive control rats received distilled water, (II): Stressed rats, (III): Non-stressed rats received daily oral dose of clonazepam (0.5 mg/kg), (IV): Stressed rats received daily oral dose of clonazepam (0.5 mg/kg), (V): Non-stressed rats received daily oral dose of alprazolam (0.3 mg/kg). (VI): Stressed rats received daily oral dose of alprazolam (0.3 mg/kg). At the end of the 4th week, total leukocyte count (WBCs) and differential count were determined, anti-sheep RBC antibody (Anti-SRBC) titer and interleukin-2 (IL-2) level were assessed, thymus glands, lymph nodes, spleens and abdominal aortae were submitted to histopathological examination. Alprazolam was found to induce a significant increase in neutrophil count and a significant decrease in lymphocytes, anti-SRBC titer and IL-2 level with severe depletion of the splenic, thymal and nodal lymphocytes, accompanied by congestion and eosinophilic vasculitis of all organs tested in comparison to clonazepam treated rats. Stress enhanced the toxic effects. It was concluded that the immune system and blood vessels can be adversely affected to a greater extent by short-term chronic administration of alprazolam than by clonazepam, and these toxic effects are aggravated by stress.


Ziprasidone, haloperidol and clonazepam intramuscular administration in the treatment of agitation symptoms in Chinese patients with schizophrenia: A network meta-analysis.

  • Liang Su‎ et al.
  • General psychiatry‎
  • 2018‎

Agitation is very common in patients with acute stage schizophrenia, and injection of antipsychotics and clonazepam is widely used. Network meta-analysis of these comparisons among three injection treatments has been seldom reported.


Clonazepam for pain due to muscle spasm in a patient with vertebral compression fractures caused by multiple myeloma: a case report.

  • Kazuki Akita‎ et al.
  • JA clinical reports‎
  • 2021‎

Vertebral compression fractures can cause severe back pain. Although many types of analgesics and interventional treatments are available, they are sometimes ineffective in mitigating the pain. We encountered a case where clonazepam was effective for the management of severe low back pain caused by lumbar vertebral compression fractures.


Bioequivalence Study of Two Tablet Formulations of Clonazepam 2 mg: A Randomized, Open-Label, Crossover Study in Healthy Mexican Volunteers Under Fasting Conditions.

  • Luis Genis-Najera‎ et al.
  • Neurology and therapy‎
  • 2024‎

The prevalence of neurological disorders is high among the Mexican population. Clonazepam is primarily indicated to treat panic disorders, certain kinds of epilepsy such as status epilepticus, childhood motor seizures (petit mal absence, Lennox-Gastaut syndrome, and infantile spasms), anxiety, and muscle spasm. This study was performed to compare bioequivalence between two oral tablet formulations of clonazepam 2 mg in healthy Mexican volunteers under fasting conditions.


Inhibitory Effect of Imperatorin on the Pharmacokinetics of Diazepam In Vitro and In Vivo.

  • Yunfang Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Diazepam is a benzodiazepine drug used to treat anxiety, insomnia, and muscle spasms. Imperatorin is a phytochemical isolated from medicinal plants and is widely used in herbal medicine. The aim of this study was to investigate the interactions between imperatorin and diazepam in vitro and in vivo and to provide evidence-based guidance for the safe clinical use of the drug.


GABA(A) receptor function in epileptic human dentate granule cells: comparison to epileptic and control rat.

  • M D Shumate‎ et al.
  • Epilepsy research‎
  • 1998‎

Using patch clamp recording techniques in dentate granule cells (DGCs) isolated from patients undergoing temporal lobectomy for intractable epilepsy, we investigated basic properties of GABA(A) receptors (GABA(A)Rs) and pharmacological sensitivity of GABA-evoked currents to modulation by zinc and benzodiazepines (BZ). Properties of human DGC GABA(A)Rs were compared to DGC GABA(A)R properties in control and epileptic rats. Blockade of GABA evoked currents by zinc was significantly enhanced in epileptic human relative to control rat DGCs. Augmentation of the GABA(A)R current by the non-subunit selective BZ agonist, clonazepam (CNZ) and by the BZ1 specific agonist, zolpidem (ZOL), were not significantly different in human DGCs relative to control or epileptic rat. GABA potency was significantly higher in epileptic human DGCs than in control or epileptic rat DGCs. The significantly enhanced efficacy of zinc in blocking GABA currents in epileptic human DGCs mirrors that seen in epileptic rat DGCs, and was coupled with mossy fiber sprouting evident in both epileptic human and rat dentate gyrus. The aberrant mossy fibers provide a novel zinc delivery system within the epileptic dentate gyrus. The mossy fiber release of zinc onto DGCs coupled with the enhanced zinc sensitivity of GABA(A)Rs in epileptic DGCs, may lead to 'dynamic disinhibition' which could compromise inhibitory efficacy in the epileptic rat and human hippocampus.


Physiological analysis of Rasmussen's encephalitis: patch clamp recordings of altered inhibitory neurotransmitter function in resected frontal cortical tissue.

  • J W Gibbs‎ et al.
  • Epilepsy research‎
  • 1998‎

Rasmussen's encephalitis (RE) is a progressive, rare childhood disease characterized by severe epilepsy, hemiplegia, dementia, and inflammation of the brain. While one mechanism underlying the pathogenesis of RE has been hypothesized to be mediated by production of excitotoxic GluR3 autoantibodies to the AMPA receptor, other neuropathological etiologies have also been indicated. Whole-cell patch clamp recordings of GABA(A) receptor mediated responses were conducted in neurons acutely isolated from an RE patient, and compared to properties of non-focal human temporal cortical neurons. RE neurons appeared similar anatomically to control cortical neurons. Significant differences in GABAergic responses were evident between RE and control neurons. GABA was significantly more potent in RE than in control cortical neurons (EC50 of 13 microM vs 23 microM, respectively). In addition, the overall efficacy of GABA was significantly decreased in RE neurons, associated with a decrease in postsynaptic GABA current density in RE neurons (5.1 pA/microm2) in comparison to controls (9.2 pA/microm2). Augmentation of GABA responses by the benzodiazepine, clonazepam (CNZ), was significantly reduced in RE in comparison to control neurons (34% vs 99% augmentation at 100 nM). The RE-associated reduced functional efficacy and altered pharmacology of neuronal GABA(A) receptors is consistent with overall disinhibition in RE neurons, and could contribute to the generation of the severe epileptic activity evident in this disorder.


Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB 2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model.

  • Magdalena Florek-Luszczki‎ et al.
  • Journal of neural transmission (Vienna, Austria : 1996)‎
  • 2014‎

The aim of this study was to characterize the influence of WIN 55,212-2 (WIN--a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant effects of various classical antiepileptic drugs (clobazam, clonazepam, phenobarbital and valproate) in the mouse 6 Hz-induced psychomotor seizure model. Limbic (psychomotor) seizure activity was evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via ocular electrodes. Drug-related adverse effects were ascertained by use of the chimney test (evaluating motor performance), step-through passive avoidance task (assessing learning) and grip-strength test (evaluating skeletal muscular strength). Total brain concentrations of antiepileptic drugs were measured by fluorescence polarization immunoassay to ascertain any pharmacokinetic contribution to the observed antiseizure effect. Results indicate that WIN (5 mg/kg, administered intraperitoneally) significantly enhanced the anticonvulsant action of clonazepam (P < 0.001), phenobarbital (P < 0.05) and valproate (P < 0.05), but not that of clobazam in the mouse 6 Hz model. Moreover, WIN (2.5 mg/kg) significantly potentiated the anticonvulsant action of clonazepam (P < 0.01), but not that of clobazam, phenobarbital or valproate in the 6 Hz test in mice. None of the investigated combinations of WIN with antiepileptic drugs was associated with any concurrent adverse effects with regard to motor performance, learning or muscular strength. Pharmacokinetic experiments revealed that WIN had no impact on total brain concentrations of antiepileptic drugs in mice. These preclinical data would suggest that WIN in combination with clonazepam, phenobarbital and valproate is associated with beneficial anticonvulsant pharmacodynamic interactions in the mouse 6 Hz-induced psychomotor seizure test.


Anticonvulsant effects of iridoid glycosides fraction purified from Feretia apodanthera Del. (Rubiaceae) in experimental mice models of generalized tonic-clonic seizures.

  • Germain Sotoing Taiwe‎ et al.
  • BMC complementary and alternative medicine‎
  • 2016‎

Despite the increasing number and variety of antiepileptic drugs, nearly 30 % of epileptic patients who receive appropriate medical attention have persisting seizures. Anticonvulsant activity has been demonstrated for different iridoid glycoside-rich plant extracts. This study was designed to investigate the anticonvulsant effects of iridoid glycosides purified from Feretia apodanthera and to explore the possible mechanisms involved in antiepileptic activity.


The 1,4-benzodiazepine Ro5-4864 (4-chlorodiazepam) suppresses multiple pro-inflammatory mast cell effector functions.

  • Omid Sascha Yousefi‎ et al.
  • Cell communication and signaling : CCS‎
  • 2013‎

Activation of mast cells (MCs) can be achieved by the high-affinity receptor for IgE (FcεRI) as well as by additional receptors such as the lipopolysaccharide (LPS) receptor and the receptor tyrosine kinase Kit (stem cell factor [SCF] receptor). Thus, pharmacological interventions which stabilize MCs in response to different receptors would be preferable in diseases with pathological systemic MC activation such as systemic mastocytosis. 1,4-Benzodiazepines (BDZs) have been reported to suppress MC effector functions. In the present study, our aim was to analyze molecularly the effects of BDZs on MC activation by comparison of the effects of the two BDZs Ro5-4864 and clonazepam, which markedly differ in their affinities for the archetypical BDZ recognition sites, i.e., the GABAA receptor and TSPO (previously termed peripheral-type BDZ receptor). Ro5-4864 is a selective agonist at TSPO, whereas clonazepam is a selective agonist at the GABAA receptor. Ro5-4864 suppressed pro-inflammatory MC effector functions in response to antigen (Ag) (degranulation/cytokine production) and LPS and SCF (cytokine production), whereas clonazepam was inactive. Signaling pathway analyses revealed inhibitory effects of Ro5-4864 on Ag-triggered production of reactive oxygen species, calcium mobilization and activation of different downstream kinases. The initial activation of Src family kinases was attenuated by Ro5-4864 offering a molecular explanation for the observed impacts on various downstream signaling elements. In conclusion, BDZs structurally related to Ro5-4864 might serve as multifunctional MC stabilizers without the sedative effect of GABAA receptor-interacting BDZs.


High-Dose Benzodiazepines Positively Modulate GABAA Receptors via a Flumazenil-Insensitive Mechanism.

  • Na Wang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Benzodiazepines (BZDs) produce versatile pharmacological actions through positive modulation of GABAA receptors (GABAARs). A previous study has demonstrated that high concentrations of diazepam potentiate GABA currents on the α1β2γ2 and α1β2 GABAARs in a flumazenil-insensitive manner. In this study, the high-concentration effects of BZDs and their sensitivity to flumazenil were determined on synaptic (α1β2γ2, α2β2γ2, α5β2γ2) and extra-synaptic (α4β2δ) GABAARs using the voltage-clamp electrophysiology technique. The in vivo evaluation of flumazenil-insensitive BZD effects was conducted in mice via the loss of righting reflex (LORR) test. Diazepam induced biphasic potentiation on the α1β2γ2, α2β2γ2 and α5β2γ2 GABAARs, but did not affect the α4β2δ receptor. In contrast to the nanomolar component of potentiation, the second potentiation elicited by micromolar diazepam was insensitive to flumazenil. Midazolam, clonazepam, and lorazepam at 200 µM exhibited similar flumazenil-insensitive effects on the α1β2γ2, α2β2γ2 and α5β2γ2 receptors, whereas the potentiation induced by 200 µM zolpidem or triazolam was abolished by flumazenil. Both the GABAAR antagonist pentylenetetrazol and Fa173, a proposed transmembrane site antagonist, abolished the potentiation induced by 200 µM diazepam. Consistent with the in vitro results, flumazenil antagonized the zolpidem-induced LORR, but not that induced by diazepam or midazolam. Pentylenetetrazol and Fa173 antagonized the diazepam-induced LORR. These findings support the existence of non-classical BZD binding sites on certain GABAAR subtypes and indicate that the flumazenil-insensitive effects depend on the chemical structures of BZD ligands.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: