Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 418 papers

Haplotyping the human leukocyte antigen system from single chromosomes.

  • Nicholas M Murphy‎ et al.
  • Scientific reports‎
  • 2016‎

We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function.


Structural alterations from multiple displacement amplification of a human genome revealed by mate-pair sequencing.

  • Xiang Jiao‎ et al.
  • PloS one‎
  • 2011‎

Comprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification. Multiple displacement amplification led to a decrease in clone coverage and an increase by two orders of magnitude in the prevalence of inversions, but did not increase the prevalence of translocations. While multiple strand displacement amplification may find uses in translocation analyses, it is likely that alternative amplification strategies need to be developed to meet the demands of cancer genomics.


Condensin confers the longitudinal rigidity of chromosomes.

  • Martin Houlard‎ et al.
  • Nature cell biology‎
  • 2015‎

In addition to inter-chromatid cohesion, mitotic and meiotic chromatids must have three physical properties: compaction into 'threads' roughly co-linear with their DNA sequence, intra-chromatid cohesion determining their rigidity, and a mechanism to promote sister chromatid disentanglement. A fundamental issue in chromosome biology is whether a single molecular process accounts for all three features. There is universal agreement that a pair of Smc-kleisin complexes called condensin I and II facilitate sister chromatid disentanglement, but whether they also confer thread formation or longitudinal rigidity is either controversial or has never been directly addressed respectively. We show here that condensin II (beta-kleisin) has an essential role in all three processes during meiosis I in mouse oocytes and that its function overlaps with that of condensin I (gamma-kleisin), which is otherwise redundant. Pre-assembled meiotic bivalents unravel when condensin is inactivated by TEV cleavage, proving that it actually holds chromatin fibres together.


Comparative genomic, transcriptomic, and proteomic reannotation of human herpesvirus 6.

  • Alexander L Greninger‎ et al.
  • BMC genomics‎
  • 2018‎

Human herpesvirus-6A and -6B (HHV-6) are betaherpesviruses that reach > 90% seroprevalence in the adult population. Unique among human herpesviruses, HHV-6 can integrate into the subtelomeric regions of human chromosomes; when this occurs in germ line cells it causes a condition called inherited chromosomally integrated HHV-6 (iciHHV-6). Only two complete genomes are available for replicating HHV-6B, leading to numerous conflicting annotations and little known about the global genomic diversity of this ubiquitous virus.


Functional significance of the sex chromosomes during spermatogenesis.

  • Yueh-Chiang Hu‎ et al.
  • Reproduction (Cambridge, England)‎
  • 2015‎

Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.


Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.

  • Daniel W Bellott‎ et al.
  • Nature‎
  • 2014‎

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions.

  • Yu Zhao‎ et al.
  • Cell‎
  • 2023‎

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation.

  • Jinhui Chen‎ et al.
  • Nature plants‎
  • 2019‎

The genus Liriodendron belongs to the family Magnoliaceae, which resides within the magnoliids, an early diverging lineage of the Mesangiospermae. However, the phylogenetic relationship of magnoliids with eudicots and monocots has not been conclusively resolved and thus remains to be determined1-6. Liriodendron is a relict lineage from the Tertiary with two distinct species-one East Asian (L. chinense (Hemsley) Sargent) and one eastern North American (L. tulipifera Linn)-identified as a vicariad species pair. However, the genetic divergence and evolutionary trajectories of these species remain to be elucidated at the whole-genome level7. Here, we report the first de novo genome assembly of a plant in the Magnoliaceae, L. chinense. Phylogenetic analyses suggest that magnoliids are sister to the clade consisting of eudicots and monocots, with rapid diversification occurring in the common ancestor of these three lineages. Analyses of population genetic structure indicate that L. chinense has diverged into two lineages-the eastern and western groups-in China. While L. tulipifera in North America is genetically positioned between the two L. chinense groups, it is closer to the eastern group. This result is consistent with phenotypic observations that suggest that the eastern and western groups of China may have diverged long ago, possibly before the intercontinental differentiation between L. chinense and L. tulipifera. Genetic diversity analyses show that L. chinense has tenfold higher genetic diversity than L. tulipifera, suggesting that the complicated regions comprising east-west-orientated mountains and the Yangtze river basin (especially near 30° N latitude) in East Asia offered more successful refugia than the south-north-orientated mountain valleys in eastern North America during the Quaternary glacial period.


Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

  • Linda Olsson‎ et al.
  • PloS one‎
  • 2011‎

Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.


Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in Drosophila.

  • Qi Zhou‎ et al.
  • PLoS genetics‎
  • 2015‎

Sex chromosomes evolve distinctive types of chromatin from a pair of ancestral autosomes that are usually euchromatic. In Drosophila, the dosage-compensated X becomes enriched for hyperactive chromatin in males (mediated by H4K16ac), while the Y chromosome acquires silencing heterochromatin (enriched for H3K9me2/3). Drosophila autosomes are typically mostly euchromatic but the small dot chromosome has evolved a heterochromatin-like milieu (enriched for H3K9me2/3) that permits the normal expression of dot-linked genes, but which is different from typical pericentric heterochromatin. In Drosophila busckii, the dot chromosomes have fused to the ancestral sex chromosomes, creating a pair of 'neo-sex' chromosomes. Here we collect genomic, transcriptomic and epigenomic data from D. busckii, to investigate the evolutionary trajectory of sex chromosomes from a largely heterochromatic ancestor. We show that the neo-sex chromosomes formed <1 million years ago, but nearly 60% of neo-Y linked genes have already become non-functional. Expression levels are generally lower for the neo-Y alleles relative to their neo-X homologs, and the silencing heterochromatin mark H3K9me2, but not H3K9me3, is significantly enriched on silenced neo-Y genes. Despite rampant neo-Y degeneration, we find that the neo-X is deficient for the canonical histone modification mark of dosage compensation (H4K16ac), relative to autosomes or the compensated ancestral X chromosome, possibly reflecting constraints imposed on evolving hyperactive chromatin in an originally heterochromatic environment. Yet, neo-X genes are transcriptionally more active in males, relative to females, suggesting the evolution of incipient dosage compensation on the neo-X. Our data show that Y degeneration proceeds quickly after sex chromosomes become established through genomic and epigenetic changes, and are consistent with the idea that the evolution of sex-linked chromatin is influenced by its ancestral configuration.


Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae).

  • Ricardo Utsunomia‎ et al.
  • PloS one‎
  • 2016‎

B chromosomes constitute a heterogeneous mixture of genomic parasites that are sometimes derived intraspecifically from the standard genome of the host species, but result from interspecific hybridization in other cases. The mode of origin determines the DNA content, with the B chromosomes showing high similarity with the A genome in the first case, but presenting higher similarity with a different species in the second. The characid fish Moenkhausia sanctaefilomenae harbours highly invasive B chromosomes, which are present in all populations analyzed to date in the Parana and Tietê rivers. To investigate the origin of these B chromosomes, we analyzed two natural populations: one carrying B chromosomes and the other lacking them, using a combination of molecular cytogenetic techniques, nucleotide sequence analysis and high-throughput sequencing (Illumina HiSeq2000). Our results showed that i) B chromosomes have not yet reached the Paranapanema River basin; ii) B chromosomes are mitotically unstable; iii) there are two types of B chromosomes, the most frequent of which is lightly C-banded (similar to euchromatin in A chromosomes) (B1), while the other is darkly C-banded (heterochromatin-like) (B2); iv) the two B types contain the same tandem repeat DNA sequences (18S ribosomal DNA, H3 histone genes, MS3 and MS7 satellite DNA), with a higher content of 18S rDNA in the heterochromatic variant; v) all of these repetitive DNAs are present together only in the paracentromeric region of autosome pair no. 6, suggesting that the B chromosomes are derived from this A chromosome; vi) the two B chromosome variants show MS3 sequences that are highly divergent from each other and from the 0B genome, although the B2-derived sequences exhibit higher similarity with the 0B genome (this suggests an independent origin of the two B variants, with the less frequent, B2 type presumably being younger); and vii) the dN/dS ratio for the H3.2 histone gene is almost 4-6 times higher for B chromosomes than for A chromosome sequences, suggesting that purifying selection is relaxed for the DNA sequences located on the B chromosomes, presumably because they are mostly inactive.


Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells.

  • Lina Marcela Gallego-Paez‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

The structural maintenance of chromosomes (SMC) proteins constitute the core of critical complexes involved in structural organization of chromosomes. In yeast, the Smc5/6 complex is known to mediate repair of DNA breaks and replication of repetitive genomic regions, including ribosomal DNA loci and telomeres. In mammalian cells, which have diverse genome structure and scale from yeast, the Smc5/6 complex has also been implicated in DNA damage response, but its further function in unchallenged conditions remains elusive. In this study, we addressed the behavior and function of Smc5/6 during the cell cycle. Chromatin fractionation, immunofluorescence, and live-cell imaging analyses indicated that Smc5/6 associates with chromatin during interphase but largely dissociates from chromosomes when they condense in mitosis. Depletion of Smc5 and Smc6 resulted in aberrant mitotic chromosome phenotypes that were accompanied by the abnormal distribution of topoisomerase IIα (topo IIα) and condensins and by chromosome segregation errors. Importantly, interphase chromatin structure indicated by the premature chromosome condensation assay suggested that Smc5/6 is required for the on-time progression of DNA replication and subsequent binding of topo IIα on replicated chromatids. These results indicate an essential role of the Smc5/6 complex in processing DNA replication, which becomes indispensable for proper sister chromatid assembly in mitosis.


Genetic interactions between chromosomes 11 and 18 contribute to airway hyperresponsiveness in mice.

  • Caroline M Ferreira‎ et al.
  • PloS one‎
  • 2012‎

We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) Fâ‚‚ and twenty-seven (A/J X C57BL/6J) Fâ‚‚ mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks--Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.


TRIM28 congenital predisposition to Wilms' tumor: novel mutations and presentation in a sibling pair.

  • Colin Moore‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2020‎

Wilms' tumor is the most common renal malignancy in children. In addition to staging, molecular risk stratification, such as loss of heterozygosity (LOH) in Chromosomes 1 and 16, is being increasingly used. Although genetic predisposition syndromes have been well-characterized in some Wilms' tumors, recent sequencing and biology efforts are expanding the classification of this malignancy. Here we present a case of siblings with remarkably similar presentations of bilateral Wilms' tumor at ∼12 mo of age. Thorough exam after the younger sibling was diagnosed did not reveal any signs to suggest one of the known Wilms' predisposition syndromes. Both were treated with standard therapies with good response and long-term sustained complete remission of 53 and 97 mo, respectively. Whole-exome sequencing was performed on a tumor sample from each patient and matched blood from one, revealing a shared truncation mutation of TRIM28 in all three samples with heterozygosity in the germline sample. TRIM28 loss has been recently implicated in early-stage Wilms' tumors with epithelioid morphology. These siblings expand the phenotype for presentation with multifocal disease with retained excellent response to standard therapy.


The status of dosage compensation in the multiple X chromosomes of the platypus.

  • Janine E Deakin‎ et al.
  • PLoS genetics‎
  • 2008‎

Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and "placentals") by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse.


Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus.

  • Jeremiah Miller‎ et al.
  • GigaScience‎
  • 2022‎

The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.


A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis.

  • Adam J Bewick‎ et al.
  • Genome biology and evolution‎
  • 2013‎

Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged ("homomorphic") sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used "RAD-tags" and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians.


Viviparous Reptile Regarded to Have Temperature-Dependent Sex Determination Has Old XY Chromosomes.

  • Paola Cornejo-Páramo‎ et al.
  • Genome biology and evolution‎
  • 2020‎

The water skinks Eulamprus tympanum and Eulamprus heatwolei show thermally induced sex determination where elevated temperatures give rise to male offspring. Paradoxically, Eulamprus species reproduce in temperatures of 12-15 °C making them outliers when compared with reptiles that use temperature as a cue for sex determination. Moreover, these two species are among the very few viviparous reptiles reported to have thermally induced sex determination. Thus, we tested whether these skinks possess undetected sex chromosomes with thermal override. We produced transcriptome and genome data for E. heatwolei. We found that E. heatwolei presents XY chromosomes that include 14 gametologs with regulatory functions. The Y chromosomal region is 79-116 Myr old and shared between water and spotted skinks. Our work provides clear evidence that climate could be useful to predict the type of sex determination systems in reptiles and it also indicates that viviparity is strictly associated with sex chromosomes.


Most lung and colon cancer susceptibility genes are pair-wise linked in mice, humans and rats.

  • Lei Quan‎ et al.
  • PloS one‎
  • 2011‎

Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10 x CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P  =  0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.


Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13.

  • Sarah L Spain‎ et al.
  • Human molecular genetics‎
  • 2012‎

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: