Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 225 papers

Corytophanids Replaced the Pleurodont XY System with a New Pair of XY Chromosomes.

  • Armando Acosta‎ et al.
  • Genome biology and evolution‎
  • 2019‎

Almost all lizard families in the pleurodont clade share the same XY system. This system was meticulously studied in Anolis carolinensis, where it shows a highly degenerated Y chromosome and a male-specific X chromosome dosage compensation mechanism. Corytophanids (casque-headed lizards) have been proposed as the only family in the pleurodont clade to lack the XY system. In this study, we worked with extensive genomic and transcriptomic data from Basiliscus vittatus, a member of the Corytophanidae family that inhabits the tropical rainforests of Mexico. We confirmed that B. vittatus underwent a sex chromosome system turnover, which consisted in the loss of the pleurodont XY system and the gain of a new pair of XY chromosomes that are orthologous to chicken chromosome 17. We estimated the origin of the sex chromosome system to have occurred ∼63 Ma in the ancestor of corytophanids. Moreover, we identified 12 XY gametologues with particular attributes, such as functions related to the membrane and intracellular trafficking, very low expression levels, blood specificity, and incomplete dosage compensation in males.


Evolution and survival on eutherian sex chromosomes.

  • Melissa A Wilson‎ et al.
  • PLoS genetics‎
  • 2009‎

Since the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata.


Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion.

  • Laurits Skov‎ et al.
  • PLoS genetics‎
  • 2017‎

The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats and the potentially large role of gene conversion. Here we perform an evolutionary analysis of 62 Y-chromosomes of Danish descent sequenced using a wide range of library insert sizes and high coverage, thus allowing large regions of these chromosomes to be well assembled. These include 17 father-son pairs, which we use to validate variation calling. Using a recent method that can integrate variants based on both mapping and de novo assembly, we genotype 10898 SNVs and 2903 indels (max length of 27241 bp) in our sample and show by father-son concordance and experimental validation that the non-recurrent SNP and indel variation on the Y chromosome tree is called very accurately. This includes variation called in a 0.9 Mb centromeric heterochromatic region, which is by far the most variable in the Y chromosome. Among the variation is also longer sequence-stretches not present in the reference genome but shared with the chimpanzee Y chromosome. We analyzed 2.7 Mb of large inverted repeats (palindromes) for variation patterns among the two palindrome arms and identified 603 mutation and 416 gene conversions events. We find clear evidence for GC-biased gene conversion in the palindromes (and a balancing AT mutation bias), but irrespective of this, also a strong bias towards gene conversion towards the ancestral state, suggesting that palindromic gene conversion may alleviate Muller's ratchet. Finally, we also find a large number of large-scale gene duplications and deletions in the palindromic regions (at least 24) and find that such events can consist of complex combinations of simultaneous insertions and deletions of long stretches of the Y chromosome.


Codon Pair Bias Is a Direct Consequence of Dinucleotide Bias.

  • Dusan Kunec‎ et al.
  • Cell reports‎
  • 2016‎

Codon pair bias is a remarkably stable characteristic of a species. Although functionally uncharacterized, robust virus attenuation was achieved by recoding of viral proteins using underrepresented codon pairs. Because viruses replicate exclusively inside living cells, we posited that their codon pair preferences reflect those of their host(s). Analysis of many human viruses showed, however, that the encoding of viruses is influenced only marginally by host codon pair preferences. Furthermore, examination of codon pair preferences of vertebrate, insect, and arthropod-borne viruses revealed that the latter do not utilize codon pairs overrepresented in arthropods more frequently than other viruses. We found, however, that codon pair bias is a direct consequence of dinucleotide bias. We conclude that codon pair bias does not play a major role in the encoding of viral proteins and that virus attenuation by codon pair deoptimization has the same molecular underpinnings as attenuation based on an increase in CpG/TpA dinucleotides.


New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics.

  • Mikhail V Repin‎ et al.
  • Molecular cytogenetics‎
  • 2009‎

The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations.


Gene-rich UV sex chromosomes harbor conserved regulators of sexual development.

  • Sarah B Carey‎ et al.
  • Science advances‎
  • 2021‎

Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.


Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots.

  • Zhen Huang‎ et al.
  • Nature communications‎
  • 2022‎

The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.


The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation.

  • Qi Zhou‎ et al.
  • PLoS biology‎
  • 2013‎

Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.


InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects.

  • X I Chen‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2021‎

Sex determination and the regulation of sexual dimorphism are among the most fascinating topics in modern biology. As the most species-rich group of sexually reproducing organisms on Earth, insects have multiple sex determination systems. Though sex chromosomes and sex-biased genes are well-studied in dozens of insects, their gene sequences are scattered in various databases. Moreover, a shortage of annotation hinders the deep mining of these data. Here, we collected the chromosome-level sex chromosome data of 49 insect species, including 34 X chromosomes, 15 Z chromosomes, 5 W chromosomes and 2 Y chromosomes. We also obtained Y-linked contigs of four insects species-Anopheles gambiae, Drosophila innubila, Drosophila yakuba and Tribolium castaneum. The unannotated chromosome-level sex chromosomes were annotated using a standard pipeline, yielding a total of 123 030 protein-coding genes, 2 159 427 repeat sequences, 894 miRNAs, 1574 rRNAs, 5105 tRNAs, 395 snoRNAs (small nucleolar RNA), 54 snRNAs (small nuclear RNA) and 5959 other ncRNAs (non-coding RNA). In addition, 36 781 sex-biased genes were identified by analyzing 62 RNA-seq (RNA sequencing) datasets. Together with 5707 sex-biased genes from the Drosophila genus collected from the Sex-Associated Gene Database, we obtained a total of 42 488 sex-biased genes from 13 insect species. All these data were deposited into InSexBase, a new user-friendly database of insect sex chromosomes and sex-biased genes. Database URL: http://www.insect-genome.com/Sexdb/.


Monoallelically expressed noncoding RNAs form nucleolar territories on NOR-containing chromosomes and regulate rRNA expression.

  • Qinyu Hao‎ et al.
  • eLife‎
  • 2024‎

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Most lung and colon cancer susceptibility genes are pair-wise linked in mice, humans and rats.

  • Lei Quan‎ et al.
  • PloS one‎
  • 2011‎

Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10 x CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P  =  0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.


No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni.

  • Nicolás Lichilín‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2023‎

Sex determination (SD) is not conserved among teleost fishes and can even differ between populations of the same species. Across the outstandingly species-rich fish family Cichlidae, more and more SD systems are being discovered. Still, the picture of SD evolution in this group is far from being complete. Lake Tanganyika and its affluent rivers are home to Astatotilapia burtoni, which belongs to the extremely successful East African cichlid lineage Haplochromini. Previously, in different families of an A. burtoni laboratory strain, an XYW system and an XY system have been described. The latter was also found in a second laboratory strain. In a laboratory-reared family descending from a population of the species' southern distribution, a second XY system was discovered. Yet, an analysis of sex chromosomes for the whole species distribution is missing. Here, we examined the genomes of 11 natural populations of A. burtoni, encompassing a wide range of its distribution, for sex-linked regions. We did not detect signs of differentiated sex chromosomes and also not the previously described sex chromosomal systems present in laboratory lines, suggesting different SD systems in the same species under natural and (long-term) artificial conditions. We suggest that SD in A. burtoni is more labile than previously assumed and consists of a combination of non-genetic, polygenic, or poorly differentiated sex chromosomes.


Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13.

  • Sarah L Spain‎ et al.
  • Human molecular genetics‎
  • 2012‎

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.


RWCFusion: identifying phenotype-specific cancer driver gene fusions based on fusion pair random walk scoring method.

  • Jianmei Zhao‎ et al.
  • Oncotarget‎
  • 2016‎

While gene fusions have been increasingly detected by next-generation sequencing (NGS) technologies based methods in human cancers, these methods have limitations in identifying driver fusions. In addition, the existing methods to identify driver gene fusions ignored the specificity among different cancers or only considered their local rather than global topology features in networks. Here, we proposed a novel network-based method, called RWCFusion, to identify phenotype-specific cancer driver gene fusions. To evaluate its performance, we used leave-one-out cross-validation in 35 cancers and achieved a high AUC value 0.925 for overall cancers and an average 0.929 for signal cancer. Furthermore, we classified 35 cancers into two classes: haematological and solid, of which the haematological got a highly AUC which is up to 0.968. Finally, we applied RWCFusion to breast cancer and found that top 13 gene fusions, such as BCAS3-BCAS4, NOTCH-NUP214, MED13-BCAS3 and CARM-SMARCA4, have been previously proved to be drivers for breast cancer. Additionally, 8 among the top 10 of the remaining candidate gene fusions, such as SULF2-ZNF217, MED1-ACSF2, and ACACA-STAC2, were inferred to be potential driver gene fusions of breast cancer by us.


Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes.

  • H Charlotte van der Does‎ et al.
  • PLoS genetics‎
  • 2016‎

Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes.


The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2.

  • Lusine Nazaryan‎ et al.
  • European journal of human genetics : EJHG‎
  • 2014‎

Next-generation mate-pair sequencing (MPS) has revealed that many constitutional complex chromosomal rearrangements (CCRs) are associated with local shattering of chromosomal regions (chromothripsis). Although MPS promises to identify the molecular basis of the abnormal phenotypes associated with many CCRs, none of the reported mate-pair sequenced complex rearrangements have been simultaneously studied with state-of-the art molecular cytogenetic techniques. Here, we studied chromothripsis-associated CCR involving chromosomes 2, 5 and 7, associated with global developmental and psychomotor delay and severe speech disorder. We identified three truncated genes: CDH12, DGKB and FOXP2, confirming the role of FOXP2 in severe speech disorder, and suggestive roles of CDH12 and/or DGKB for the global developmental and psychomotor delay. Our study confirmes the power of MPS for detecting breakpoints and truncated genes at near nucleotide resolution in chromothripsis. However, only by combining MPS data with conventional G-banding and extensive fluorescence in situ hybridizations could we delineate the precise structure of the derivative chromosomes.


Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8.

  • Tomoki Yoshikawa‎ et al.
  • PloS one‎
  • 2018‎

LC16m8 (m8), a highly attenuated vaccinia virus (VAC) strain, was developed as a smallpox vaccine, and its safety and immunogenicity have been confirmed. Here, we aimed to develop a system that recovers infectious m8 from a bacterial artificial chromosome (BAC) that retains the full-length viral genomic DNA (m8-BAC system). The infectious virus was successfully recovered from a VAC-BAC plasmid, named pLC16m8-BAC. Furthermore, the bacterial replicon-free virus was generated by intramolecular homologous recombination and was successfully recovered from a modified VAC-BAC plasmid, named pLC16m8.8S-BAC. Also, the growth of the recovered virus was indistinguishable from that of authentic m8. The full genome sequence of the plasmid, which harbors identical inverted terminal repeats (ITR) to that of authentic m8, was determined by long-read next-generation sequencing (NGS). The ITR contains x 18 to 32 of the 70 and x 30 to 45 of 54 base pair tandem repeats, and the number of tandem repeats was different between the ITR left and right. Since the virus recovered from pLC16m8.8S-BAC was expected to retain the identical viral genome to that of m8, including the ITR, a reference-based alignment following a short-read NGS was performed to validate the sequence of the recovered virus. Based on the pattern of coverage depth in the ITR, no remarkable differences were observed between the virus and m8, and the other region was confirmed to be identical as well. In summary, this new system can recover the virus, which is geno- and phenotypically indistinguishable from authentic m8.


A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs.

  • Ying Bai‎ et al.
  • BMC genomics‎
  • 2014‎

It is widely known that castration has a significant effect on the accumulation of adipose tissue. microRNAs (miRNAs) are known to be involved in fat deposition and to be regulated by the androgen-induced androgen receptor (AR). However, there is little understanding of the relationship between miRNAs and fat deposition after castration. In this study, the high-throughput SOLiD sequencing approach was used to identify and characterize miRNA expression in backfat from intact and castrated full-sib male 23-week-old pigs. The patterns of adipogenesis and fat deposition were compared between castrated and intact male pigs.


Sequence Variations and Haplotypes of the GJB2 Gene Revealed by Resequencing of 192 Chromosomes from the General Population in Korea.

  • Hee-Jung Kim‎ et al.
  • Clinical and experimental otorhinolaryngology‎
  • 2010‎

Hearing impairment (HI) is the most common sensory deficit in human. The Gap Junction Protein, Beta-2 (GJB2) gene encodes the protein connexin 26, and this gene accounts for up to half of the cases of autosomal recessive nonsyndromic HI. This study was conducted to obtain a set of sequence variations (SVs) of the GJB2 gene among Koreans from the general population for making molecular genetic diagnoses and performing genetic counseling.


Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

  • Lars Feuk‎ et al.
  • PLoS genetics‎
  • 2005‎

With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb) in length, 75% were flanked on one or both sides by (often unrelated) segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85%) semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13%) regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22), 13 kb (at 7q11), and 1 kb (at 16q24) fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: