Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Glial responses after chorda tympani nerve injury.

  • Dianna L Bartel‎
  • The Journal of comparative neurology‎
  • 2012‎

The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully within a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay, the nucleus of the solitary tract (nTS), after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2 to 20 days after injury. This increased microglial population resulted primarily from microglial proliferation from 1.5 to 3 days, which was supplemented by microglial migration within subdivisions of the nTS between days 2 and 3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of glial fibrillary acidic protein (GFAP) by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days, by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long-lasting taste alterations following CT lesion.


Impact of chorda tympani nerve injury on cell survival, axon maintenance, and morphology of the chorda tympani nerve terminal field in the nucleus of the solitary tract.

  • Rebecca B Reddaway‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Chorda tympani nerve transection (CTX) has been useful to study the relationship between nerve and taste buds in fungiform papillae. This work demonstrated that the morphological integrity of taste buds depends on their innervation. Considerable research focused on the effects of CTX on peripheral gustatory structures, but much less research has focused on the central effects. Here, we explored how CTX affects ganglion cell survival, maintenance of injured peripheral axons, and the chorda tympani nerve terminal field organization in the nucleus of the solitary tract (NTS). After CTX in adult rats, the chorda tympani nerve was labeled with biotinylated dextran amine at 3, 7, 14, 30, and 60 days post-CTX to allow visualization of the terminal field associated with peripheral processes. There was a significant and persistent reduction of the labeled chorda tympani nerve terminal field volume and density in the NTS following CTX. Compared with controls, the volume of the labeled terminal field was not altered at 3 or 7 days post-CTX; however, it was significantly reduced by 44% and by 63% at 30 and 60 days post-CTX, respectively. Changes in the density of labeled terminal field in the NTS paralleled the terminal field volume results. The dramatic decrease in labeled terminal field size post-CTX cannot be explained by a loss of geniculate ganglion neurons or degeneration of central axons. Instead, the function and/or maintenance of the peripheral axonal process appear to be affected. These new results have implications for long-term functional and behavioral alterations.


Calcium deficiency alters chorda tympani nerve responses to oral calcium chloride.

  • M Inoue‎ et al.
  • Physiology & behavior‎
  • 1998‎

As a preliminary examination of the influence of calcium deficiency on gustatory sensitivity to calcium, we recorded electrophysiological responses of the chorda tympani nerve of calcium-replete and calcium-deprived rats. Relative to rats fed calcium-replete diet, rats fed low calcium diet had lower electrophysiological response thresholds to CaCl2 (300 vs. 30 microM) and calcium lactate (300 vs. 100 microM) but not NaCl. The calcium-deprived animals had a greater chorda tympani response to 30, 100 and 300 microM CaCl2 and 30 and 100 microM calcium lactate but a smaller chorda tympani response to 30, 100 and 300 mM CaCl2 and to 100 mM MgCl2. A behavioral study using an ascending series of 48-h two-bottle preference tests showed that the threshold for acceptance of CaCl2 was similar to the electrophysiological threshold (310 microM in replete rats, 100 microM in calcium-deprived rats). These findings raise the possibility that changes in calcium status influence the perception of calcium, which, in turn, influences calcium intake.


Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

  • Yi-Ke Li‎ et al.
  • Neural regeneration research‎
  • 2015‎

The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.


Effect of chorda tympani nerve transection on salt taste perception in mice.

  • Glen J Golden‎ et al.
  • Chemical senses‎
  • 2011‎

Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0-300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies.


Improved visualization of the chorda tympani nerve using ultra-high-resolution computed tomography.

  • Masahiro Fujiwara‎ et al.
  • Acta radiologica open‎
  • 2021‎

Recognition of the anatomical course of the chorda tympani nerve (CTN) is important for preventing iatrogenic injuries during middle-ear surgery.


BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

  • Lingbin Meng‎ et al.
  • Experimental neurology‎
  • 2017‎

Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section.


Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerve transection.

  • Andrew Padalhin‎ et al.
  • PeerJ‎
  • 2022‎

Numerous studies have noted the effect of chorda tympani (CT) nerve transection on taste sensitivity yet very few have directly observed its effects on taste receptor and taste signaling protein expressions in the tongue tissue.


Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

  • Zuo Jun Ren‎ et al.
  • PloS one‎
  • 2015‎

Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.


Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values.

  • Jack H Noble‎ et al.
  • Medical physics‎
  • 2008‎

In cochlear implant surgery, an electrode array is permanently implanted in the cochlea to stimulate the auditory nerve and allow deaf people to hear. A minimally invasive surgical technique has recently been proposed-percutaneous cochlear access-in which a single hole is drilled from the skull surface to the cochlea. For the method to be feasible, a safe and effective drilling trajectory must be determined using a preoperative CT. Segmentation of the structures of the ear would improve trajectory planning safety and efficiency and enable the possibility of automated planning. Two important structures of the ear, the facial nerve and the chorda tympani, are difficult to segment with traditional methods because of their size (diameters as small as 1.0 and 0.3 mm, respectively), the lack of contrast with adjacent structures, and large interpatient variations. A multipart, model-based segmentation algorithm is presented in this article that accomplishes automatic segmentation of the facial nerve and chorda tympani. Segmentation results are presented for ten test ears and are compared to manually segmented surfaces. The results show that the maximum error in structure wall localization is approximately 2 voxels for the facial nerve and the chorda, demonstrating that the method the authors propose is robust and accurate.


Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections.

  • Donald Ganchrow‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2 -IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN.


Postnatal development of chorda tympani axons in the rat nucleus of the solitary tract.

  • Siting Wang‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

The chorda tympani nerve (CT), one of three nerves that convey gustatory information to the nucleus of the solitary tract (NTS), displays terminal field reorganization after postnatal day 15 in the rat. Aiming to gain insight into mechanisms of this phenomenon, CT axon projection field and terminal morphology in NTS subdivisions were examined using tract tracing, light microscopy, and immunoelectron microscopy at four postnatal ages: P15, P25, P35, and adult. The CT axons that innervated NTS rostrolateral subdivision both in the adult and in P15 rats were morphologically distinct from those that innervated the rostrocentral, gustatory subdivision. In both subdivisions, CT terminals reached morphological maturity before P15. Rostrolateral, but not rostrocentral axons, went through substantial axonal branch elimination after P15. Rostrocentral CT synapses, however, redistribute onto postsynaptic targets in the following weeks. CT terminal preference for GABAergic postsynaptic targets was drastically reduced after P15. Furthermore, CT synapses became a smaller component of the total synaptic input to the rostrocentral NTS after P35. The results underlined that CT axons in rostrocentral and rostrolateral subdivisions represent two distinct populations of CT input, displaying different morphological properties and structural reorganization mechanisms during postnatal development.


Probing the multimodal fungiform papilla: complex peripheral nerve endings of chorda tympani taste and mechanosensitive fibers before and after Hedgehog pathway inhibition.

  • Christopher R Donnelly‎ et al.
  • Cell and tissue research‎
  • 2022‎

The fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain. To examine CT fibers that respond to tactile stimuli in the absence of TB, we used Phox2b-Cre; Rosa26LSL-TdTomato reporter mice to selectively label CT fibers with TdTomato. Normally CT fibers project in a compact bundle directly into TB, but after HH pathway inhibition, CT fibers reorganize and expand just under the FP epithelium where TB were. This widened expanse of CT fibers coexpresses Synapsin-1, β-tubulin, S100, and neurofilaments. Further, GAP43 expression in these fibers suggests they are actively remodeling. Interestingly, CT fibers have complex terminals within the apical FP epithelium and in perigemmal locations in the FP apex. These extragemmal fibers remain after HH pathway inhibition. To identify tactile end organs in FP, we used a K20 antibody to label Merkel cells. In control mice, K20 was expressed in TB cells and at the base of epithelial ridges outside of FP. After HH pathway inhibition, K20 + cells remained in epithelial ridges but were eliminated in the apical FP without TB. These data suggest that the complex, extragemmal nerve endings within and disbursed under the apical FP are the mechanosensitive nerve endings of the CT that remain after HH pathway inhibition.


P2X(2)- and P2X(3)-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice.

  • Yusuke Ishida‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

The subtype 2 and subtype 3 ionotropic purinergic receptors (P2X receptors) are crucial for gustation, but the distribution of these receptors in the geniculate ganglion (GG) and their colocalization in tongue papillae remain unknown. Here we investigated the expression and colocalization of P2X(2) and P2X(3) receptors in the GG and fungiform papillae in rats and mice by using in situ hybridization and immunohistochemistry. In both species, P2X(2) transcripts and immunoreactivity were detected in approximately 50-60% of GG neuronal somata, whereas those of P2X(3) were observed in almost all neurons. In each fungiform papilla, immunoreactivity for both receptors was mostly colocalized and was seen in nerve fibers and their bundles concentrated in the taste buds. Because it is well known that the P2X receptors are involved in not only taste but also nociception, we determined whether the expression originated from the chorda tympani nerve (CT, gustatory) or trigeminal nerve (somatosensory) by cutting the CT in both animals. Most P2X(2) and P2X(3) immunoreactivity in the fungiform papillae was abolished after transection, although the nerve fiber immunoreactivity of transient receptor potential V1 (a marker of somatosensory nerve fibers) remained unchanged, indicating that most fungiform papillae nerve fibers with P2X(2) and P2X(3) receptors were derived from CT. Taken together, these findings suggest that most P2X(2) and P2X(3) receptors in fungiform papillae are used for gustation rather than somatosensation.


Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice.

  • Vicktoria Danilova‎ et al.
  • BMC neuroscience‎
  • 2003‎

Recent progress in discernment of molecular pathways of taste transduction underscores the need for comprehensive phenotypic information for the understanding of the influence of genetic factors in taste. To obtain information that can be used as a base line for assessment of effects of genetic manipulations in mice taste, we have recorded the whole-nerve integrated responses to a wide array of taste stimuli in the chorda tympani (CT) and glossopharyngeal (NG) nerves, the two major taste nerves from the tongue.


Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

  • Vijay Lyall‎ et al.
  • The Journal of general physiology‎
  • 2005‎

The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.


Intracellular pH modulates taste receptor cell volume and the phasic part of the chorda tympani response to acids.

  • Vijay Lyall‎ et al.
  • The Journal of general physiology‎
  • 2006‎

The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 microM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid-sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid-sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to acidic stimuli.


Modulation of rat chorda tympani NaCl responses and intracellular Na+ activity in polarized taste receptor cells by pH.

  • Vijay Lyall‎ et al.
  • The Journal of general physiology‎
  • 2002‎

Mixture interactions between sour and salt taste modalities were investigated in rats by direct measurement of intracellular pH (pH(i)) and Na(+) activity ([Na(+)](i)) in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) nerve recordings. Stimulating the lingual surface with NaCl solutions adjusted to pHs ranging between 2.0 and 10.3 increased the magnitude of NaCl CT responses linearly with increasing external pH (pH(o)). At pH 7.0, the epithelial sodium channel (ENaC) blocker, benzamil, decreased NaCl CT responses and inhibited further changes in CT responses induced by varying pH(o) to 2.0 or 10.3. At constant pH(o), buffering NaCl solutions with potassium acetate/acetic acid (KA/AA) or HCO(3)(-)/CO(2) inhibited NaCl CT responses relative to CT responses obtained with NaCl solutions buffered with HEPES. The carbonic anhydrase blockers, MK-507 and MK-417, attenuated the inhibition of NaCl CT responses in HCO(3)(-)/CO(2) buffer, suggesting a regulatory role for pH(i). In polarized TRCs step changes in apical pH(o) from 10.3 to 2.0 induced a linear decrease in pH(i) that remained within the physiological range (slope = 0.035; r(2) = 0.98). At constant pH(o), perfusing the apical membrane with Ringer's solutions buffered with KA/AA or HCO(3)(-)/CO(2) decreased resting TRC pH(i), and MK-507 or MK-417 attenuated the decrease in pH(i) in TRCs perfused with HCO(3)(-)/CO(2) buffer. In parallel experiments, TRC [Na(+)](i) decreased with (a) a decrease in apical pH, (b) exposing the apical membrane to amiloride or benzamil, (c) removal of apical Na(+), and (d) acid loading the cells with NH(4)Cl or sodium acetate at constant pH(o). Diethylpyrocarbonate and Zn(2+), modification reagents for histidine residues in proteins, attenuated the CO(2)-induced inhibition of NaCl CT responses and the pH(i)-induced inhibition of apical Na(+) influx in TRCs. We conclude that TRC pH(i) regulates Na(+)-influx through amiloride-sensitive apical ENaCs and hence modulates NaCl CT responses in acid/salt mixtures.


Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

  • Nick A Guagliardo‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used.


Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract.

  • Louis J Martin‎ et al.
  • Neuroscience‎
  • 2019‎

Neural insult during development results in recovery outcomes that vary dependent upon the system under investigation. Nerve regeneration does not occur if the rat gustatory chorda tympani nerve is sectioned (CTX) during neonatal (≤P10) development. It is unclear how chorda tympani soma and terminal fields are affected after neonatal CTX. The current study determined the impact of neonatal CTX on chorda tympani neurons and brainstem gustatory terminal fields. To assess terminal field volume in the nucleus of the solitary tract (NTS), rats received CTX at P5 or P10 followed by chorda tympani label, or glossopharyngeal (GL) and greater superficial petrosal (GSP) label as adults. In another group of animals, terminal field volumes and numbers of chorda tympani neurons in the geniculate ganglion (GG) were determined by labeling the chorda tympani with DiI at the time of CTX in neonatal (P5) and adult (P50) rats. There was a greater loss of chorda tympani neurons following P5 CTX compared to adult denervation. Chorda tympani terminal field volume was dramatically reduced 50 days after P5 or P10 CTX. Lack of nerve regeneration after neonatal CTX is not caused by ganglion cell death alone, as approximately 30% of chorda tympani neurons survived into adulthood. Although the total field volume of intact gustatory nerves was not altered, the GSP volume and GSP-GL overlap increased in the dorsal NTS after CTX at P5, but not P10, demonstrating age-dependent plasticity. Our findings indicate that the developing gustatory system is highly plastic and simultaneously vulnerable to injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: