Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Osteoarthritis and articular chondrocalcinosis in the elderly.

  • E Wilkins‎ et al.
  • Annals of the rheumatic diseases‎
  • 1983‎

One hundred consecutive admissions to an acute geriatric unit were examined for clinical and radiographic evidence of osteoarthritis (OA) and articular chondrocalcinosis (ACC). Thirty-four patients had ACC. This was age related, the prevalence rising from 15% in patients aged 65-74 years to 44% in patients over 84 years. The commonly involved joints were the knee (25%), public symphysis (15%), and wrist (9%). No other aetiological factors predisposing to ACC were found. Of the 25 patients with ACC in the knee 7 had no symptoms or signs and no radiographic evidence of OA at that site. However, the combination of ACC and radiographic OA was characterised by an increase in clinical joint disease. Features of inflammation (joint swelling and joint line tenderness) involving the knee, wrist, and elbow were particularly common in ACC. It is concluded that ACC is common in the elderly and is associated with an increased incidence of joint disease.


Chondrocytes From Osteoarthritic and Chondrocalcinosis Cartilage Represent Different Phenotypes.

  • Franziska Meyer‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Basic calcium phosphate (BCP)-based calcification of cartilage is a common finding during osteoarthritis (OA) and is directly linked to the severity of the disease and hypertrophic differentiation of chondrocytes. Chondrocalcinosis (CC) is associated with calcium pyrophosphate dihydrate (CPPD) deposition disease in the joint inducing OA-like symptoms. There is only little knowledge about the effect of CPPD crystals on chondrocytes and the signaling pathways involved in their generation. The aim of this study was to investigate the chondrocyte phenotype in CC cartilage and the effect of CPPD crystals on chondrocytes. Cartilage samples of patients with CC, patients with severe OA, and healthy donors were included in this study. The presence of CC was evaluated using standard X-ray pictures, as well as von Kossa staining of cartilage sections. OA severity was evaluated using the Chambers Score on cartilage sections, as well as the radiological Kellgren-Lawrence Score. Patients with radiologically detectable CC presented calcification mainly on the cartilage surface, whereas OA patients showed calcification mainly in the pericellular matrix of hypertrophic chondrocytes. OA cartilage exhibited increased levels of collagen X and matrix metalloproteinase 13 (MMP13) compared with CC and healthy cartilage. This observation was confirmed by qRT-PCR using cartilage samples. No relevant influence of CPPD crystals on hypertrophic marker genes was observed in vitro, whereas BCP crystals significantly induced hypertrophic differentiation of chondrocytes. Interestingly, we observed an increased expression of p16 and p21 in cartilage samples of CC patients compared with OA patients and healthy controls, indicating cellular senescence. To investigate whether CPPD crystals were sufficient to induce senescence, we incubated chondrocytes with BCP and CPPD crystals and quantified senescence using β-gal staining. No significant difference was observed for the staining, but an increase of p16 expression was observed after 10 days of culture. Primary chondrocytes from CC patients produced CPPD crystals in culture. This phenotype was stabilized by mitomycin C-induced senescence. Healthy and OA chondrocytes did not exhibit this phenotype. BCP and CPPD crystals seem to be associated with two different chondrocyte phenotypes. Whereas BCP deposition is associated with chondrocyte hypertrophy, CPPD deposition is associated with cellular senescence.


A Phage Display-Identified Short Peptide Capable of Hydrolyzing Calcium Pyrophosphate Crystals-The Etiological Factor of Chondrocalcinosis.

  • Radosław W Piast‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Chondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display. The first screening was designed to select phages able to bind the acidic part of alendronic acid (pyrophosphate analog). The second was a catalytic assay in the presence of crystals. The best-performing peptides were subsequently chemically synthesized and rechecked for catalytic properties. One peptide, named R25, turned out to possess some hydrolytic activity toward crystals. Its catalysis is Mg2+-dependent and also works against soluble species of pyrophosphate.


Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies.

  • Ana Rita Couto‎ et al.
  • Human genome variation‎
  • 2017‎

Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.


The association between ANKH promoter polymorphism and chondrocalcinosis is independent of age and osteoarthritis: results of a case-control study.

  • Abhishek Abhishek‎ et al.
  • Arthritis research & therapy‎
  • 2014‎

Chondrocalcinosis (CC) most commonly results from calcium pyrophosphate crystal deposition (CPPD). The objective of this study is to examine the association between candidate single-nucleotide polymorphisms (SNPs) and radiographic CC.


Ultra-high resolution 3D MRI for chondrocalcinosis detection in the knee-a prospective diagnostic accuracy study comparing 7-tesla and 3-tesla MRI with CT.

  • Christoph Germann‎ et al.
  • European radiology‎
  • 2021‎

To test the diagnostic accuracy of a 3D dual-echo steady-state (DESS) sequence at 7-T MRI regarding the detection of chondral calcific deposits of the knee in comparison to 3-T MRI, using CT as cross-sectional imaging reference standard.


The role of TNFRSF11B in development of osteoarthritic cartilage.

  • Alejandro Rodríguez Ruiz‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2022‎

OA is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA.


Stroke risk in arthritis: A systematic review and meta-analysis of cohort studies.

  • Wei Liu‎ et al.
  • PloS one‎
  • 2021‎

Stroke is a major contributor to the global burden of disease. Although numerous modifiable risk factors (RF) for stroke have been identified, some remain unexplained. Increasing studies have investigated stroke risk in arthritis, but their results are inconsistent. We aimed to synthesize, quantify, and compare the risk of stroke for the major types of arthritis in cohort studies by using a systematic review and meta-analysis approach.


Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH.

  • Charlene J Williams‎ et al.
  • American journal of human genetics‎
  • 2002‎

Familial autosomal dominant calcium pyrophosphate dihydrate (CPPD) chondrocalcinosis has previously been mapped to chromosome 5p15. We have identified a mutation in the ANKH gene that segregates with the disease in a family with this condition. ANKH encodes a putative transmembrane inorganic pyrophosphate (PPi) transport channel. We postulate that loss of function of ANKH causes elevated extracellular PPi levels, predisposing to CPPD crystal deposition.


A novel mutation of CLCNKB in a Japanese patient of Gitelman-like phenotype with diuretic insensitivity to thiazide administration.

  • Kumiko Ohkubo‎ et al.
  • Meta gene‎
  • 2014‎

The clinical phenotypes of patients with Bartter syndrome type III sometimes closely resemble those of Gitelman syndrome. We report a patient with mild, adult-onset symptoms, such as muscular weakness and fatigue, who showed hypokalemic metabolic alkalosis, elevated renin-aldosterone levels with normal blood pressure, hypocalciuria and hypomagnesemia. She was also suffering from chondrocalcinosis. A diuretic test with furosemide and thiazide showed a good response to furosemide, but little response to thiazide. Although the clinical findings and diuretic tests predicted that the patient had Gitelman syndrome, genetic analysis found no mutation in SLC12A3. However, a novel missense mutation, p.L647F in CLCNKB, which is located in the CBS domain at the C-terminus of ClC-Kb, was discovered. Therefore, gene analyses of CLCNKB and SLC12A3 might be necessary to elucidate the precise etiology of the salt-losing tubulopathies regardless of the results of diuretic tests.


SMOC2 inhibits calcification of osteoprogenitor and endothelial cells.

  • Tine Peeters‎ et al.
  • PloS one‎
  • 2018‎

Tissue calcification is an important physiological process required for the normal structure and function of bone. However, ectopic or excessive calcification contributes to diseases such as chondrocalcinosis, to calcium deposits in the skin or to vascular calcification. SMOC2 is a member of the BM-40/osteonectin family of calcium-binding secreted matricellular proteins. Using osteoprogenitor MC3T3-E1 cells stably overexpressing SMOC2, we show that SMOC2 inhibits osteogenic differentiation and extracellular matrix mineralization. Stable Smoc2 knockdown in these cells had no effect on mineralization suggesting that endogenous SMOC2 is not essential for the mineralization process. Mineralization in MC3T3-E1 cells overexpressing mutant SMOC2 lacking the extracellular calcium-binding domain was significantly increased compared to cells overexpressing full length SMOC2. When SMOC2 overexpressing cells were cultured in the presence of extracellular calcium supplementation, SMOC2's inhibitory effect on calcification was rescued. Our observations were translationally validated in primary human periosteal-derived cells. Furthermore, SMOC2 was able to impair mineralization in transdifferentiated human umbilical vein endothelial cells. Taken together, our data indicate that SMOC2 can act as an inhibitor of mineralization. We propose a possible role for SMOC2 to prevent calcification disorders.


Epidemiological, Clinical and Genetic Study of Hypophosphatasia in A Spanish Population: Identification of Two Novel Mutations in The Alpl Gene.

  • Cristina García-Fontana‎ et al.
  • Scientific reports‎
  • 2019‎

Hypophosphatasia (HPP) is a genetic disease caused by one or several mutations in ALPL gene encoding the tissue-nonspecific alkaline phosphatase affecting the mineralization process. Due to its low prevalence and lack of recognition, this metabolic disorder is generally confused with other more frequent bone disorders. An assessment of serum total alkaline phosphatase (ALP) levels was performed in 78,590 subjects. Pyridoxal-5'-phosphate (PLP) concentrations were determined and ALPL gene was sequenced in patients potentially affected by HPP. Functional validation of the novel mutations found was performed using a cell-based assay. Our results showed persistently low serum ALP levels in 0.12% of subjects. Among the studied subjects, 40% presented with HPP-related symptoms. Nine of them (~28%) had a history of fractures, 5 (~16%) subjects showed chondrocalcinosis and 4 (~13%) subjects presented with dental abnormalities. Eleven subjects showed increased PLP concentrations. Seven of them showed ALPL gene mutations (2 of the mutations corresponded to novel genetic variants). In summary, we identified two novel ALPL gene mutations associated with adult HPP. Using this protocol, almost half of the studied patients were diagnosed with HPP. Based on these results, the estimated prevalence of mild HPP in Spain could be up to double than previously reported.


Ionomycin ameliorates hypophosphatasia via rescuing alkaline phosphatase deficiency-mediated L-type Ca2+ channel internalization in mesenchymal stem cells.

  • Bei Li‎ et al.
  • Bone research‎
  • 2020‎

The loss-of-function mutations in the ALPL result in hypophosphatasia (HPP), an inborn metabolic disorder that causes skeletal mineralization defects. In adults, the main clinical features are early loss of primary or secondary teeth, osteoporosis, bone pain, chondrocalcinosis, and fractures. However, guidelines for the treatment of adults with HPP are not available. Here, we show that ALPL deficiency caused a reduction in intracellular Ca2+ influx, resulting in an osteoporotic phenotype due to downregulated osteogenic differentiation and upregulated adipogenic differentiation in both human and mouse bone marrow mesenchymal stem cells (BMSCs). Increasing the intracellular level of calcium in BMSCs by ionomycin treatment rescued the osteoporotic phenotype in alpl+/- mice and BMSC-specific (Prrx1-alpl-/-) conditional alpl knockout mice. Mechanistically, ALPL was found to be required for the maintenance of intracellular Ca2+ influx, which it achieves by regulating L-type Ca2+ channel trafficking via binding to the α2δ subunits to regulate the internalization of the L-type Ca2+ channel. Decreased Ca2+ flux inactivates the Akt/GSK3β/β-catenin signaling pathway, which regulates lineage differentiation of BMSCs. This study identifies a previously unknown role of the ectoenzyme ALPL in the maintenance of calcium channel trafficking to regulate stem cell lineage differentiation and bone homeostasis. Accelerating Ca2+ flux through L-type Ca2+ channels by ionomycin treatment may be a promising therapeutic approach for adult patients with HPP.


Synthesis and Biological Evaluation of Arylamide Sulphonate Derivatives as Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 and -3 Inhibitors.

  • Saif Ullah‎ et al.
  • ACS omega‎
  • 2022‎

Aberrant level of ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 is linked with numerous disorders, for instance, diabetes, cancer, osteoarthritis, chondrocalcinosis, and allergic reactions. These disorders may be cured or minimized by blocking the activity of ENPP1 and ENPP3 isozymes. In this study, arylamide sulphonates were synthesized, characterized, and evaluated for their capability to affect the activity of isozymes ENPP1 and ENPP3. Among the selective inhibitors of ENPP1, compounds 4f and 4q exhibited sub-micromolar IC50 values of 0.28 ± 0.08 and 0.37 ± 0.03 μM, respectively, followed by 7a, with IC50 equal to 0.81 ± 0.05 μM, whereas out of the selective inhibitors of isozyme ENPP3, 4t and 7d preferably lessened the activity to half of the maximal inhibitory concentration of 0.15 ± 0.04 and 0.16 ± 0.01 μM alternatively. In addition, many structures including 4c, 4g, 4k, 4l, 4n, 4o, 4r, 4s, 7b, 7c, and 7e inhibited the activity of both isozymes to a significant level. Enzyme kinetic study of compound 4j revealed an uncompetitive mode of inhibition of ENPP1 isozyme, while 7e competitively blocked the activity of ENPP3. Cell viability analysis revealed the compound 4o as a cytotoxic agent against MCF7 (human breast cancer cell line) with a percentage inhibition of 63.2 ± 2.51%, whereas compounds 4c, 4d, 4n, and 7d decreased the HeLa cell viability (human cervical cancer cell line) to more than 50%. The tested compounds were non-cytotoxic against HEK293 (a human embryonic kidney cell line). Molecular docking analysis of selected inhibitors of both isozymes produced optimistic interactions with the influential amino acids, such as Leu290, Lys295, Tyr340, Asp376, His380, and Pro323 of ENPP1, whereas residues Asn226, His329, Leu239, Tyr289, Pro272, Tyr320, and Ala205 of ENPP3 crystallographic structure formed interactions with the potent inhibitors.


Musculoskeletal adverse events induced by immune checkpoint inhibitors: a large-scale pharmacovigilance study.

  • Hao Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Background: The musculoskeletal toxicity of immune checkpoint inhibitors (ICIs) is receiving increasing attention with clinical experience. Nevertheless, the absence of a systematic investigation into the musculoskeletal toxicity profile of ICIs currently results in the under-recognition of associated adverse events. Further and more comprehensive investigations are warranted to delineate the musculoskeletal toxicity profile of ICIs and characterize these adverse events. Material and methods: The present study employed the FDA Adverse Event Reporting System database to collect adverse events between January 2010 and March 2021. We utilized both the reporting odds ratio and the Bayesian confidence propagation neural network algorithms to identify suspected musculoskeletal adverse events induced by ICIs. Subsequently, the clinical characteristics and comorbidities of the major musculoskeletal adverse events were analyzed. The risk of causing these events with combination therapy versus monotherapy was compared using logistic regression model and Ω shrinkage measure model. Results: The musculoskeletal toxicity induced by ICIs primarily involves muscle tissue, including neuromuscular junctions, fascia, tendons, and tendon sheaths, as well as joints, spine, and bones, including cartilage. The toxicity profile of PD-1/PD-L1 and CTLA-4 inhibitors varies, wherein the PD-1 inhibitor pembrolizumab exhibits a heightened overall risk of inducing musculoskeletal adverse events. The major ICIs-induce musculoskeletal adverse events, encompassing conditions such as myositis, neuromyopathy (including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Guillain-Barré syndrome, and Chronic inflammatory demyelinating polyradiculoneuropathy), arthritis, fractures, myelitis, spinal stenosis, Sjogren's syndrome, fasciitis, tenosynovitis, rhabdomyolysis, rheumatoid myalgia, and chondrocalcinosis. Our study provides clinical characteristics and comorbidities of the major ICIs-induced musculoskeletal adverse events. Furthermore, the combination therapy of nivolumab and ipilimumab does not result in a statistically significant escalation of the risk associated with the major musculoskeletal adverse events. Conclusion: Immune checkpoint inhibitors administration triggers a range of musculoskeletal adverse events, warranting the optimization of their management during clinical practice.


Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

  • Frederic Cailotto‎ et al.
  • Arthritis research & therapy‎
  • 2007‎

ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an inhibitory Smad, failed to affect the inducing effect of TGF-beta1 on Ank mRNA level. These data show that TGF-beta1 increases ePPi levels, mainly by the induction of the Ank gene, which requires activation of Ras, Raf-1, ERK, and Ca2+-dependent PKC pathways in chondrocytes.


Lysophosphatidylcholine 16:0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3.

  • Florian Jacquot‎ et al.
  • Pain‎
  • 2022‎

Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: