Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Crystal structure of human lysosomal acid lipase and its implications in cholesteryl ester storage disease.

  • Francis Rajamohan‎ et al.
  • Journal of lipid research‎
  • 2020‎

Lysosomal acid lipase (LAL) is a serine hydrolase that hydrolyzes cholesteryl ester (CE) and TGs delivered to the lysosomes into free cholesterol and fatty acids. LAL deficiency due to mutations in the LAL gene (LIPA) results in accumulation of TGs and cholesterol esters in various tissues of the body leading to pathological conditions such as Wolman's disease and CE storage disease (CESD). Here, we present the first crystal structure of recombinant human LAL (HLAL) to 2.6 Å resolution in its closed form. The crystal structure was enabled by mutating three of the six potential glycosylation sites. The overall structure of HLAL closely resembles that of the evolutionarily related human gastric lipase (HGL). It consists of a core domain belonging to the classical α/β hydrolase-fold family with a classical catalytic triad (Ser-153, His-353, Asp-324), an oxyanion hole, and a "cap" domain, which regulates substrate entry to the catalytic site. Most significant structural differences between HLAL and HGL exist at the lid region. Deletion of the short helix, 238NLCFLLC244, at the lid region implied a possible role in regulating the highly hydrophobic substrate binding site from self-oligomerization during interfacial activation. We also performed molecular dynamic simulations of dog gastric lipase (lid-open form) and HLAL to gain insights and speculated a possible role of the human mutant, H274Y, leading to CESD.


Weekly Treatment of 2-Hydroxypropyl-β-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice.

  • Sofie M A Walenbergh‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Recently, the importance of lysosomes in the context of the metabolic syndrome has received increased attention. Increased lysosomal cholesterol storage and cholesterol crystallization inside macrophages have been linked to several metabolic diseases, such as atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Two-hydroxypropyl-β-cyclodextrin (HP-B-CD) is able to redirect lysosomal cholesterol to the cytoplasm in Niemann-Pick type C1 disease, a lysosomal storage disorder. We hypothesize that HP-B-CD ameliorates liver cholesterol and intracellular cholesterol levels inside Kupffer cells (KCs). Hyperlipidemic low-density lipoprotein receptor knockout (Ldlr(-/-)) mice were given weekly, subcutaneous injections with HP-B-CD or control PBS. In contrast to control injections, hyperlipidemic mice treated with HP-B-CD demonstrated a shift in intracellular cholesterol distribution towards cytoplasmic cholesteryl ester (CE) storage and a decrease in cholesterol crystallization inside KCs. Compared to untreated hyperlipidemic mice, the foamy KC appearance and liver cholesterol remained similar upon HP-B-CD administration, while hepatic campesterol and 7α-hydroxycholesterol levels were back increased. Thus, HP-B-CD could be a useful tool to improve intracellular cholesterol levels in the context of the metabolic syndrome, possibly through modulation of phyto- and oxysterols, and should be tested in the future. Additionally, these data underline the existence of a shared etiology between lysosomal storage diseases and NAFLD.


GCN2 in the brain programs PPARγ2 and triglyceride storage in the liver during perinatal development in response to maternal dietary fat.

  • Xu Xu‎ et al.
  • PloS one‎
  • 2013‎

The liver plays a central role in regulating lipid metabolism and facilitates efficient lipid utilization and storage. We discovered that a modest increase in maternal dietary fat in mice programs triglyceride storage in the liver of their developing offspring. The activation of this programming is not apparent, however, until several months later at the adult stage. We found that the perinatal programming of adult hepatic triglyceride storage was controlled by the eIF2α kinase GCN2 (EIF2AK4) in the brain of the offspring, which stimulates epigenetic modification of the Pparγ2 gene in the neonatal liver. Genetic ablation of Gcn2 in the offspring exhibited reduced hepatic triglyceride storage and repressed expression of the peroxisome proliferator-activated receptor gamma 2 (Pparγ2) and two lipid droplet protein genes, Fsp27 and Cidea. Brain-specific, but not liver-specific, Gcn2 KO mice exhibit these same defects demonstrating that GCN2 in the developing brain programs hepatic triglyceride storage. GCN2 and nutrition-dependent programming of Pparγ2 is correlated with trimethylation of lysine 4 of histone 3 (H3K4me3) in the Pparγ2 promoter region during neonatal development. In addition to regulating hepatic triglyceride in response to modest changes in dietary fat, Gcn2 deficiency profoundly impacts the severity of the obese-diabetic phenotype of the leptin receptor mutant (db/db) mouse, by reducing hepatic steatosis and obesity but exacerbating the diabetic phenotype. We suggest that GCN2-dependent perinatal programming of hepatic triglyceride storage is an adaptation to couple early nutrition to anticipated needs for hepatic triglyceride storage in adults. However, increasing the hepatic triglyceride set point during perinatal development may predispose individuals to hepatosteatosis, while reducing circulating fatty acid levels that promote insulin resistance.


Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice.

  • Dimitri Moreau‎ et al.
  • EMBO reports‎
  • 2019‎

Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.


Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease.

  • Sandra Torres‎ et al.
  • Redox biology‎
  • 2017‎

Niemann Pick type C (NPC) disease is a progressive lysosomal storage disorder caused by mutations in genes encoding NPC1/NPC2 proteins, characterized by neurological defects, hepatosplenomegaly and premature death. While the primary biochemical feature of NPC disease is the intracellular accumulation of cholesterol and gangliosides, predominantly in endolysosomes, mitochondrial cholesterol accumulation has also been reported. As accumulation of cholesterol in mitochondria is known to impair the transport of GSH into mitochondria, resulting in mitochondrial GSH (mGSH) depletion, we investigated the impact of mGSH recovery in NPC disease. We show that GSH ethyl ester (GSH-EE), but not N-acetylcysteine (NAC), restored the mGSH pool in liver and brain of Npc1-/- mice and in fibroblasts from NPC patients, while both GSH-EE and NAC increased total GSH levels. GSH-EE but not NAC increased the median survival and maximal life span of Npc1-/- mice. Moreover, intraperitoneal therapy with GSH-EE protected against oxidative stress and oxidant-induced cell death, restored calbindin levels in cerebellar Purkinje cells and reversed locomotor impairment in Npc1-/- mice. High-resolution respirometry analyses revealed that GSH-EE improved oxidative phosphorylation, coupled respiration and maximal electron transfer in cerebellum of Npc1-/- mice. Lipidomic analyses showed that GSH-EE treatment had not effect in the profile of most sphingolipids in liver and brain, except for some particular species in brain of Npc1-/- mice. These findings indicate that the specific replenishment of mGSH may be a potential promising therapy for NPC disease, worth exploring alone or in combination with other options.


c.*84G>A Mutation in CETP Is Associated with Coronary Artery Disease in South Indians.

  • Mala Ganesan‎ et al.
  • PloS one‎
  • 2016‎

Coronary artery disease (CAD) is one of the leading causes of mortality worldwide. It is a multi-factorial disease and several studies have demonstrated that the genetic factors play a major role in CAD. Although variations in cholesteryl ester transfer protein (CETP) gene are reported to be associated with CAD, this gene has not been studied in South Indian populations. Hence we evaluated the CETP gene variations in CAD patients of South Indian origin.


Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice.

  • Aurélien J C Pommier‎ et al.
  • PLoS genetics‎
  • 2013‎

LXR (Liver X Receptors) act as "sensor" proteins that regulate cholesterol uptake, storage, and efflux. LXR signaling is known to influence proliferation of different cell types including human prostatic carcinoma (PCa) cell lines. This study shows that deletion of LXR in mouse fed a high-cholesterol diet recapitulates initial steps of PCa development. Elevation of circulating cholesterol in Lxrαβ-/- double knockout mice results in aberrant cholesterol ester accumulation and prostatic intra-epithelial neoplasia. This phenotype is linked to increased expression of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2), which results in the down-regulation of the tumor suppressors Msmb and Nkx3.1 through increased methylation of lysine 27 of histone H3 (H3K27) on their promoter regions. Altogether, our data provide a novel link between LXR, cholesterol homeostasis, and epigenetic control of tumor suppressor gene expression.


Could lysosomal acid lipase enzyme activity be used for clinical follow-up in cryptogenic cirrhosis?

  • Engin Köse‎ et al.
  • Turkish journal of medical sciences‎
  • 2022‎

Cholesterol ester storage disease (CESD) is one of the rare causes that should be kept in mind in the etiology of cirrhosis. Recent studies detected that significantly reduced lysosomal acid lipase deficiency enzyme (LAL) in patients with cryptogenic cirrhosis (CC). Moreover, studies have evaluated that LAL activity is as effective as scoring systems in assessing the severity of cirrhosis. In this study, we aimed to investigate the CESD with LAL level and mutation analysis of LIPA gene in patients diagnosed with CC and to compare LAL activities between patients with CC and healthy volunteers.


ARF1 with Sec7 Domain-Dependent GBF1 Activates Coatomer Protein I To Support Classical Swine Fever Virus Entry.

  • Liang Zhang‎ et al.
  • Journal of virology‎
  • 2022‎

Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A (BFA) resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA- and GCA (golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1 which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. IMPORTANCE Classical swine fever (CSF), a highly contact-infectious disease caused by classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection are still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.


Genome-Wide Association Study of Cardiovascular Resilience Identifies Protective Variation in the CETP Gene.

  • Chenglong Yu‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background The risk of atherosclerotic cardiovascular disease (ASCVD) increases sharply with age. Some older individuals, however, remain unaffected despite high predicted risk. These individuals may carry cardioprotective genetic variants that contribute to resilience. Our aim was to assess whether asymptomatic older individuals without prevalent ASCVD carry cardioprotective genetic variants that contribute to ASCVD resilience. Methods and Results We performed a genome-wide association study using a 10-year predicted ASCVD risk score as a quantitative trait, calculated only in asymptomatic older individuals aged ≥70 years without prevalent ASCVD. Our discovery genome-wide association study of N=12 031 ASCVD event-free individuals from the ASPREE (Aspirin in Reducing Events in the Elderly) trial identified 2 independent variants, rs9939224 (P<5×10-8) and rs56156922 (P<10-6), in the CETP (cholesteryl ester transfer protein) gene. The CETP gene is a regulator of plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and lipoprotein(a) levels, and it is a therapeutic drug target. The associations were replicated in the UK Biobank (subpopulation of N=13 888 individuals aged ≥69 years without prevalent ASCVD). Carriers of the identified CETP variants (versus noncarriers) had higher plasma high-density lipoprotein cholesterol levels, lower plasma low-density lipoprotein cholesterol levels, and reduced risk of incident ASCVD events during follow-up. Expression quantitative trait loci analysis predicted the identified CETP variants reduce CETP gene expression across various tissues. Previously reported associations between genetic CETP inhibition and increased risk of age-related macular degeneration were not observed among the 3917 ASPREE trial participants with retinal imaging and genetic data available. Conclusions Common genetic variants in the CETP gene region are associated with cardiovascular resilience during aging. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01038583.


Therapeutic efficacy of rscAAVrh74.miniCMV.LIPA gene therapy in a mouse model of lysosomal acid lipase deficiency.

  • Patricia Lam‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2022‎

Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa -/- mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.


Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans.

  • Ron C Helderman‎ et al.
  • Bone‎
  • 2021‎

Lysosomal acid lipase (LAL) is essential for cholesteryl ester (CE) and triacylglycerol (TAG) hydrolysis in the lysosome. Clinically, an autosomal recessive LIPA mutation causes LAL deficiency (LALD), previously described as Wolman Disease or Cholesteryl Ester Storage Disease (CESD). LAL-D is associated with ectopic lipid accumulation in the liver, small intestine, spleen, adrenal glands, and blood. Considering the importance of unesterified cholesterol and fatty acids in bone metabolism, we hypothesized that LAL is essential for bone formation, and ultimately, skeletal health. To investigate the role of LAL in skeletal homeostasis, we used LAL-deficient (-/-) mice, in vitro osteoblast cultures, and novel clinical data from LAL-D patients. Both male and female LAL-/- mice demonstarted lower trabecular and cortical bone parameters , which translated to reduced biomechanical properties. Further histological analyses revealed that LAL-/- mice had fewer osteoblasts, with no change in osteoclast or marrow adipocyte numbers. In studying the cell-autonomous role of LAL, we observed impaired differentiation of LAL-/- calvarial osteoblasts and in bone marrow stromal cells treated with the LAL inhibitor lalistat. Consistent with LAL's role in other tissues, lalistat resulted in profound lipid puncta accumulation and an altered intracellular lipid profile. Finally, we analyzed a large de-identified national insurance database (i.e. 2016/2017 Optum Clinformatics®) which revealed that adults (≥18 years) with CESD (n = 3076) had a higher odds ratio (OR = 1.21; 95% CI = 1.03-1.41) of all-cause fracture at any location compared to adults without CESD (n = 13.7 M) after adjusting for demographic variables and osteoporosis. These data demonstrate that alterations in LAL have significant clinical implications related to fracture risk and that LAL's modulation of lipid metabolism is a critical for osteoblast function.


Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults.

  • Binglan Li‎ et al.
  • PLoS genetics‎
  • 2021‎

As a type of relatively new methodology, the transcriptome-wide association study (TWAS) has gained interest due to capacity for gene-level association testing. However, the development of TWAS has outpaced statistical evaluation of TWAS gene prioritization performance. Current TWAS methods vary in underlying biological assumptions about tissue specificity of transcriptional regulatory mechanisms. In a previous study from our group, this may have affected whether TWAS methods better identified associations in single tissues versus multiple tissues. We therefore designed simulation analyses to examine how the interplay between particular TWAS methods and tissue specificity of gene expression affects power and type I error rates for gene prioritization. We found that cross-tissue identification of expression quantitative trait loci (eQTLs) improved TWAS power. Single-tissue TWAS (i.e., PrediXcan) had robust power to identify genes expressed in single tissues, but, often found significant associations in the wrong tissues as well (therefore had high false positive rates). Cross-tissue TWAS (i.e., UTMOST) had overall equal or greater power and controlled type I error rates for genes expressed in multiple tissues. Based on these simulation results, we applied a tissue specificity-aware TWAS (TSA-TWAS) analytic framework to look for gene-based associations with pre-treatment laboratory values from AIDS Clinical Trial Group (ACTG) studies. We replicated several proof-of-concept transcriptionally regulated gene-trait associations, including UGT1A1 (encoding bilirubin uridine diphosphate glucuronosyltransferase enzyme) and total bilirubin levels (p = 3.59×10-12), and CETP (cholesteryl ester transfer protein) with high-density lipoprotein cholesterol (p = 4.49×10-12). We also identified several novel genes associated with metabolic and virologic traits, as well as pleiotropic genes that linked plasma viral load, absolute basophil count, and/or triglyceride levels. By highlighting the advantages of different TWAS methods, our simulation study promotes a tissue specificity-aware TWAS analytic framework that revealed novel aspects of HIV-related traits.


Integrative proteomics and pharmacogenomics analysis of methylphenidate treatment response.

  • Bruna S da Silva‎ et al.
  • Translational psychiatry‎
  • 2019‎

Transcriptomics and candidate gene/protein expression studies have indicated several biological processes modulated by methylphenidate (MPH), widely used in attention-deficit/hyperactivity disorder (ADHD) treatment. However, the lack of a differential proteomic profiling of MPH treatment limits the understanding of the most relevant mechanisms by which MPH exerts its pharmacological effects at the molecular level. Therefore, our aim is to investigate the MPH-induced proteomic alterations using an experimental design integrated with a pharmacogenomic analysis in a translational perspective. Proteomic analysis was performed using the cortices of Wistar-Kyoto rats, which were treated by gavage with MPH (2 mg/kg) or saline for two weeks (n = 6/group). After functional enrichment analysis of the differentially expressed proteins (DEP) in rats, the significant biological pathways were tested for association with MPH response in adults with ADHD (n = 189) using genome-wide data. Following MPH treatment in rats, 98 DEPs were found (P < 0.05 and FC < -1.0 or > 1.0). The functional enrichment analysis of the DEPs revealed 18 significant biological pathways (gene-sets) modulated by MPH, including some with recognized biological plausibility, such as those related to synaptic transmission. The pharmacogenomic analysis in the clinical sample evaluating these pathways revealed nominal associations for gene-sets related to neurotransmitter release and GABA transmission. Our results, which integrate proteomics and pharmacogenomics, revealed putative molecular effects of MPH on several biological processes, including oxidative stress, cellular respiration, and metabolism, and extended the results involving synaptic transmission pathways to a clinical sample. These findings shed light on the molecular signatures of MPH effects and possible biological sources of treatment response variability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: