Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,025 papers

A few enlarged chloroplasts are less efficient in photosynthesis than a large population of small chloroplasts in Arabidopsis thaliana.

  • Dongliang Xiong‎ et al.
  • Scientific reports‎
  • 2017‎

The photosynthetic, biochemical, and anatomical traits of accumulation and replication of chloroplasts (arc) mutants of Arabidopsis thaliana were investigated to study the effects of chloroplast size and number on photosynthesis. Chloroplasts were found to be significantly larger, and the chloroplast surface area exposed to intercellular air spaces (S c) significantly lower in the mutants than in their wild-types. The decreased S c and increase cytoplasm thickness in the mutants resulted in a lower mesophyll conductance (g m) and a consequently lower chloroplast CO2 concentration (C c). There were no significant differences between the mutants and their wild-types in maximal carboxylation rate (V cmax), maximal electron transport (J cmax), and leaf soluble proteins. Leaf nitrogen (N) and Rubisco content were similar in both Wassilewskija (Ws) wild-type (Ws-WT) and the Ws mutant (arc 8), whereas they were slightly higher in Columbia (Col) wild-type (Col-WT) than the Col mutant (arc 12). The photosynthetic rate (A) and photosynthetic N use efficiency (PNUE) were significantly lower in the mutants than their wild-types. The mutants showed similar A/C c responses as their wild-type counterparts, but A at given C c was higher in Col and its mutant than in Ws and its mutant. From these results, we conclude that decreases in g m and C c are crucial to the reduction in A in arc mutants.


Identification of protein stability determinants in chloroplasts.

  • Wiebke Apel‎ et al.
  • The Plant journal : for cell and molecular biology‎
  • 2010‎

Although chloroplast protein stability has long been recognised as a major level of post-translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N- and C-termini were systematically modified. We found that major stability determinants are located in the N-terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N-terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N-terminal amino acid residue), (ii) an N-end rule-like protein degradation pathway, and (iii) additional sequence determinants in the N-terminal region.


Biosynthesis of gold nanoparticles using chloroplasts.

  • Yi Xia Zhang‎ et al.
  • International journal of nanomedicine‎
  • 2011‎

In this paper, a new method of one-pot biosynthesizing of gold nanoparticles (GNPs), using chloroplasts as reductants and stabilizers is reported. The as-prepared GNPs were characterized by ultraviolet visible spectroscopy, transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy (FTIR). The cytotoxicity of the GNPs was evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method against gastric mucous cell line GES-1 and gastric cancer cell line MGC-803. Rhodamine 6G as a Raman probe was used for investigating surface-enhanced Raman spectroscopy (SERS) enhancement of GNPs. The transmission electron microscopy results indicated that the GNPs were spherical in structure and almost 20 nm in diameter. Ultraviolet visible spectroscopy exhibited an absorption peak at 545 nm. The GNPs exhibited high crystallinity, with the (111) plane as the predominant orientation, clarified by X-ray powder diffraction. In addition, a potential mechanism was proposed to interpret the formation process of GNPs, mainly based on the analysis of FTIR results. The FTIR spectrum confirmed that the GNPs were carried with N-H groups. Toxicological assays of as-prepared GNPs revealed that the green GNPs were nontoxic. SERS analysis revealed that the GNPs without any treatment could substantially enhance the Raman signals of rhodamine 6G. The Raman enhancement factor was calculated to be nearly 10(10) orders of magnitude. In conclusion, the GNPs with good biocompatibility and excellent SERS effect were successfully synthesized using chloroplasts. These biogenetic GNPs have great potential for ultrasensitive detection of biomarkers in vitro and in vivo based on SERS.


Arabidopsis Leaf Chloroplasts Have a Specific Sphingolipidome.

  • Chang Yang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2024‎

Sphingolipids are ubiquitous in eukaryotes and certain prokaryotes, where they serve as vital components of biological membranes and bioactive molecules. Chloroplasts have complex membrane structures that play crucial roles in photosynthesis, but their specific sphingolipidome remains unreported. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to analyze the sphingolipidome of purified Arabidopsis thaliana chloroplasts. We detected 92 chloroplast sphingolipids. The chloroplast sphingolipidome differed from total leaf (TL) samples, with a higher content of free long-chain bases and hydroxyceramides and a greater proportion of complex sphingolipids with 16C fatty acid (FA) forms. Notably, chloroplast glucosylceramides were predominantly the d18:1 h16:0 and t18:1 h16:0 forms rather than the 24C FA form found in TL and other cellular structures. Comparing the sphingolipidomes of different cellular structures underscores the inhomogeneity of the intracellular distribution of sphingolipids. This provides a robust reference for further elucidating the function of sphingolipids in plant cells.


Salt stress affects mRNA editing in soybean chloroplasts.

  • Nureyev F Rodrigues‎ et al.
  • Genetics and molecular biology‎
  • 2017‎

Soybean, a crop known by its economic and nutritional importance, has been the subject of several studies that assess the impact and the effective plant responses to abiotic stresses. Salt stress is one of the main environmental stresses and negatively impacts crop growth and yield. In this work, the RNA editing process in the chloroplast of soybean plants was evaluated in response to a salt stress. Bioinformatics approach using sRNA and mRNA libraries were employed to detect specific sites showing differences in editing efficiency. RT-qPCR was used to measure editing efficiency at selected sites. We observed that transcripts of NDHA, NDHB, RPS14 and RPS16 genes presented differences in coverage and editing rates between control and salt-treated libraries. RT-qPCR assays demonstrated an increase in editing efficiency of selected genes. The salt stress enhanced the RNA editing process in transcripts, indicating responses to components of the electron transfer chain, photosystem and translation complexes. These increases can be a response to keep the homeostasis of chloroplast protein functions in response to salt stress.


Reference-free comparative genomics of 174 chloroplasts.

  • Chai-Shian Kua‎ et al.
  • PloS one‎
  • 2012‎

Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ~18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied genomes and rapid discovery of informative candidate regions.


A Transcription Factor Regulates Gene Expression in Chloroplasts.

  • Kexing Xin‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The chloroplast is a semi-autonomous organelle with its own genome. The expression of chloroplast genes depends on both chloroplasts and the nucleus. Although many nucleus-encoded proteins have been shown to localize in chloroplasts and are essential for chloroplast gene expression, it is not clear whether transcription factors can regulate gene expression in chloroplasts. Here we report that the transcription factor NAC102 localizes in both chloroplasts and nucleus in Arabidopsis. Specifically, NAC102 localizes in chloroplast nucleoids. Yeast two-hybrid assay and co-immunoprecipitation assay suggested that NAC102 interacts with chloroplast RNA polymerases. Furthermore, overexpression of NAC102 in chloroplasts leads to reduced chloroplast gene expression and chlorophyll content, indicating that NAC102 functions as a repressor in chloroplasts. Our study not only revealed that transcription factors are new regulators of chloroplast gene expression, but also discovered that transcription factors can function in chloroplasts in addition to the canonical organelle nucleus.


Chloroplasts Isolation from Chlamydomonas reinhardtii under Nitrogen Stress.

  • Miao Yang‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Triacylglycerols are produced in abundance through chloroplast and endoplasmic reticulum pathways in some microalgae exposed to stress, though the relative contribution of either pathway remains elusive. Characterization of these pathways requires isolation of the organelles. In this study, an efficient and reproducible approach, including homogenous batch cultures of nitrogen-deprived algal cells in photobioreactors, gentle cell disruption using a simple custom-made disruptor with mechanical shear force, optimized differential centrifugation and Percoll density gradient centrifugation, was developed to isolate chloroplasts from Chlamydomonas reinhardtii subjected to nitrogen stress. Using this approach, the maximum limited stress duration was 4 h and the stressed cells exhibited 19 and 32% decreases in intracellular chlorophyll and nitrogen content, respectively. Chloroplasts with 48 - 300 μg chlorophyll were successfully isolated from stressed cells containing 10 mg chlorophyll. These stressed chloroplasts appeared intact, as monitored by ultrastructure observation and a novel quality control method involving the fatty acid biomarkers. This approach can provide sufficient quantities of intact stressed chloroplasts for subcellular biochemical studies in microalgae.


Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.

  • Peter K Lundquist‎ et al.
  • Molecular plant‎
  • 2017‎

Blue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immunoblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts. Fractionation of the gel into six bands allowed identification and label-free quantification of 1000 chloroplast proteins with native molecular weight separation. Significantly, this approach achieves a depth of identification comparable with traditional shotgun proteomic analyses of chloroplasts, indicating much of the known chloroplast proteome is amenable to MS/MS identification under our fractionation scheme. By limiting the number of fractionation bands to six, we facilitate scaled-up comparative analyses, as we demonstrate with the reticulata chloroplast mutant displaying a reticulated leaf phenotype. Our comparative proteomics approach identified a candidate interacting protein of RETICULATA as well as effects on lipid remodeling proteins, amino acid metabolic enzymes, and plastid division machinery. We additionally highlight selected proteins from each sub-compartment of the chloroplast that provide novel insight on known or hypothesized protein complexes to further illustrate the utility of this approach. Our results demonstrate the high sensitivity and reproducibility of this technique, which is anticipated to be widely adaptable to other sub-cellular compartments.


Translocation of Drought-Responsive Proteins from the Chloroplasts.

  • Ping Li‎ et al.
  • Cells‎
  • 2020‎

Some chloroplast proteins are known to serve as messengers to transmit retrograde signals from chloroplasts to the nuclei in response to environmental stresses. However, whether particular chloroplast proteins respond to drought stress and serve as messengers for retrograde signal transduction are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) to monitor the proteomic changes in tobacco (Nicotiana benthamiana) treated with drought stress/re-watering. We identified 3936 and 1087 differentially accumulated total leaf and chloroplast proteins, respectively, which were grouped into 16 categories. Among these, one particular category of proteins, that includes carbonic anhydrase 1 (CA1), exhibited a great decline in chloroplasts, but a remarkable increase in leaves under drought stress. The subcellular localizations of CA1 proteins from moss (Physcomitrella patens), Arabidopsis thaliana and rice (Oryza sativa) in P. patens protoplasts consistently showed that CA1 proteins gradually diminished within chloroplasts but increasingly accumulated in the cytosol under osmotic stress treatment, suggesting that they could be translocated from chloroplasts to the cytosol and act as a signal messenger from the chloroplast. Our results thus highlight the potential importance of chloroplast proteins in retrograde signaling pathways and provide a set of candidate proteins for further research.


Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

  • Alexander A Bulychev‎ et al.
  • Biochimica et biophysica acta‎
  • 2015‎

Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo.


Absence of photosynthetic state transitions in alien chloroplasts.

  • Anna M Yeates‎ et al.
  • Planta‎
  • 2019‎

The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants.


Protein import into chloroplasts involves redox-regulated proteins.

  • Michael Küchler‎ et al.
  • The EMBO journal‎
  • 2002‎

Pre-protein translocation into chloroplasts is accomplished by two distinct translocation machineries in the outer and inner envelope, respectively. We have isolated the translocon at the inner envelope membrane (Tic complex) by blue-native PAGE and describe a new Tic subunit, Tic62. Tic62, together with Tic110 and Tic55, forms a core translocation unit. The N-terminus of Tic62 shows strong homologies to NAD(H) dehydrogenases in eukaryotes and to Ycf39-like proteins present in cyanobacteria and non-green algae. The stromal-facing C-terminus of Tic62 contains a novel, repetitive module that interacts with a ferredoxin-NAD(P)(+) oxidoreductase. Ferredoxin-NAD(P)(+) oxidoreductase catalyses the final electron transfer of oxygenic photosynthesis from ferredoxin to NAD(P). Substrates that interfere with either NAD binding, such as deamino-NAD, or influence the ratio of NAD(P)/NAD(P)H, such as ruthenium hexamine trichloride, modulate the import characteristics of leaf-specific ferredoxin-NAD(P)(+) oxidoreductase isologues differently. We conclude that the Tic complex can regulate protein import into chloroplasts by sensing and reacting to the redox state of the organelle.


Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts.

  • Julia Grimmer‎ et al.
  • Nature communications‎
  • 2020‎

The proteasome is an essential protein-degradation machinery in eukaryotic cells that controls protein turnover and thereby the biogenesis and function of cell organelles. Chloroplasts import thousands of nuclear-encoded precursor proteins from the cytosol, suggesting that the bulk of plastid proteins is transiently exposed to the cytosolic proteasome complex. Therefore, there is a cytosolic equilibrium between chloroplast precursor protein import and proteasomal degradation. We show here that a shift in this equilibrium, induced by mild genetic proteasome impairment, results in elevated precursor protein abundance in the cytosol and significantly increased accumulation of functional photosynthetic complexes in protein import-deficient chloroplasts. Importantly, a proteasome lid mutant shows improved photosynthetic performance, even in the absence of an import defect, signifying that functional precursors are continuously degraded. Hence, turnover of plastid precursors in the cytosol represents a mechanism to constrain thylakoid membrane assembly and photosynthetic electron transport.


Extraplastidic site-specific factors mediate RNA editing in chloroplasts.

  • R Bock‎ et al.
  • The EMBO journal‎
  • 1997‎

Single nucleotides in higher plant organellar mRNAs are subject to post-transcriptional alterations by RNA editing, typically resulting in changes of the encoded protein sequence. Although some information has been acquired on the general features of the editing processes in both plastids and plant mitochondria, the mechanisms and factors involved in the selective recognition of the nucleotide to be edited are still unknown. To gain a better understanding of how an editing site is specifically selected by the organellar RNA editing machinery, we have attempted to rescue a previously generated tobacco plastid editing mutant. Using an interspecific protoplast fusion approach, we were able to restore RNA editing activity for a specific site in the psbF transcript that otherwise remained unedited. Our results suggest (i) that site-specific trans-acting factors mediate chloroplast editing site recognition and (ii) that these factors are of extraplastidic origin.


Toc64, a new component of the protein translocon of chloroplasts.

  • K Sohrt‎ et al.
  • The Journal of cell biology‎
  • 2000‎

A subunit of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) of 64 kD is described, Toc64. Toc64 copurifies on sucrose density gradients with the isolated Toc complex. Furthermore, it can be cross-linked in intact chloroplasts to a high molecular weight complex containing both Toc and Tic subunits and a precursor protein. The 0 A cross-linker CuCl(2) yields the reversible formation of disulfide bridge(s) between Toc64 and the established Toc complex subunits in purified outer envelope membranes. Toc64 contains three tetratricopeptide repeat motifs that are exposed at the chloroplast cytosol interface. We propose that Toc64 functions early in preprotein translocation, maybe as a docking protein for cytosolic cofactors of the protein import into chloroplasts.


Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae.

  • Livia S Ferreira-Camargo‎ et al.
  • AMB Express‎
  • 2015‎

Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly, little has been done to determine which processes serve as rate-limiting steps for protein accumulation. In other expression systems, as Escherichia coli, Chinese hamster ovary cells, and insect cells, recombinant protein accumulation can be hampered by cell's inability to fold the target polypeptide into the native state, resulting in aggregation and degradation. To determine if chloroplasts' ability to oxidize proteins that require disulfide bonds into a stable conformation is a rate-limiting step of protein accumulation, three recombinant strains, each expressing a different recombinant protein, were analyzed. These recombinant proteins included fluorescent GFP, a reporter containing no disulfide bonds; Gaussia princeps luciferase, a luminescent reporter containing disulfide bonds; and an immunotoxin, an antibody-fusion protein containing disulfide bonds. Each strain was analyzed for its ability to accumulate proteins when supplemented with selenocystamine, a small molecule capable of catalyzing the formation of disulfide bonds. Selenocystamine supplementation led to an increase in luciferase and immunotoxin but not GFP accumulation. These results demonstrated that selenocystamine can increase the accumulation of proteins containing disulfide bonds and suggests that a rate-limiting step in chloroplast protein accumulation is the disulfide bonds formation in recombinant proteins native structure.


Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana.

  • Kazusato Oikawa‎ et al.
  • Communications biology‎
  • 2021‎

Plant mitochondria move dynamically inside cells and this movement is classified into two types: directional movement, in which mitochondria travel long distances, and wiggling, in which mitochondria travel short distances. However, the underlying mechanisms and roles of both types of mitochondrial movement, especially wiggling, remain to be determined. Here, we used confocal laser-scanning microscopy to quantitatively characterize mitochondrial movement (rate and trajectory) in Arabidopsis thaliana mesophyll cells. Directional movement leading to long-distance migration occurred at high speed with a low angle-change rate, whereas wiggling leading to short-distance migration occurred at low speed with a high angle-change rate. The mean square displacement (MSD) analysis could separate these two movements. Directional movement was dependent on filamentous actin (F-actin), whereas mitochondrial wiggling was not, but slightly influenced by F-actin. In mesophyll cells, mitochondria could migrate by wiggling, and most of these mitochondria associated with chloroplasts. Thus, mitochondria migrate via F-actin-independent wiggling under the influence of F-actin during their association with chloroplasts in Arabidopsis.


Ubiquitin-based pathway acts inside chloroplasts to regulate photosynthesis.

  • Yi Sun‎ et al.
  • Science advances‎
  • 2022‎

Photosynthesis is the energetic basis for most life on Earth, and in plants it operates inside double membrane-bound organelles called chloroplasts. The photosynthetic apparatus comprises numerous proteins encoded by the nuclear and organellar genomes. Maintenance of this apparatus requires the action of internal chloroplast proteases, but a role for the nucleocytosolic ubiquitin-proteasome system (UPS) was not expected, owing to the barrier presented by the double-membrane envelope. Here, we show that photosynthesis proteins (including those encoded internally by chloroplast genes) are ubiquitinated and processed via the CHLORAD pathway: They are degraded by the 26S proteasome following CDC48-dependent retrotranslocation to the cytosol. This demonstrates that the reach of the UPS extends to the interior of endosymbiotically derived chloroplasts, where it acts to regulate photosynthesis, arguably the most fundamental process of life.


Construction of DNA Tools for Hyperexpression in Marchantia Chloroplasts.

  • Eftychios Frangedakis‎ et al.
  • ACS synthetic biology‎
  • 2021‎

Chloroplasts are attractive platforms for synthetic biology applications since they are capable of driving very high levels of transgene expression, if mRNA production and stability are properly regulated. However, plastid transformation is a slow process and currently limited to a few plant species. The liverwort Marchantia polymorpha is a simple model plant that allows rapid transformation studies; however, its potential for protein hyperexpression has not been fully exploited. This is partially due to the fact that chloroplast post-transcriptional regulation is poorly characterized in this plant. We have mapped patterns of transcription in Marchantia chloroplasts. Furthermore, we have obtained and compared sequences from 51 bryophyte species and identified putative sites for pentatricopeptide repeat protein binding that are thought to play important roles in mRNA stabilization. Candidate binding sites were tested for their ability to confer high levels of reporter gene expression in Marchantia chloroplasts, and levels of protein production and effects on growth were measured in homoplastic transformed plants. We have produced novel DNA tools for protein hyperexpression in this facile plant system that is a test-bed for chloroplast engineering.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: