Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 5,390 papers

A Comparison of Genetic Diversity of COX-III Gene in Lowland Chickens and Tibetan Chickens.

  • Xueqin Liu‎ et al.
  • BioMed research international‎
  • 2017‎

To obtain a full understanding of the genetic diversity of the cytochrome oxidase III gene (COX-III) and its association with high altitude adaptation in Tibetan chickens, we sequenced COX-III in 12 chicken populations (155 Tibetan chickens and 145 other domestic chickens). We identified a total of 11 single nucleotide polymorphisms (SNPs) and 12 haplotypes (Ha1-Ha12). Low genetic diversity (haplotype diversity = 0.531 ± 0.087, nucleotide diversity = 0.00125) was detected for COX-III, and haplotype diversity of Tibetan chicken populations (0.750 ± 0.018) was markedly higher than lowland chicken populations (0.570 ± 0.028). Obvious genetic differentiation (nucleotide divergence = 0.092~0.339) and conspicuous gene communication (gene flow = 0.33~32.22) among 12 populations suggested that Tianfu black-bone fowl (white feather) was possibly introduced from Tibetan chicken. SNP m.10587 T>C affects the specific functions of the COX enzyme. Haplotype Ha3 was found in Tibetan chickens, and SNP m.10115G>A caused an amino acid substitution (Val62Ile) associated with phospholipid binding, while mutations m.10017C>A and m.10555G>A and the previously reported SNP m.10065T>C reduced the hydropathy index to some extent. Together, this indicates that the mitochondrial membrane is more hydrophobic in Tibetan chickens.


Hepatic lipid metabolomics in response to heat stress in local broiler chickens breed (Huaixiang chickens).

  • Yan Guo‎ et al.
  • Veterinary medicine and science‎
  • 2021‎

High-temperature environment-induced heat stress (HS) is a hazard environmental element for animals, leading to dramatic changes in physiological and metabolic function. However, the metabolomic-level mechanisms underlying lipid metabolism in liver of slow-growing broilers are still obscure. The present study investigated the effects of HS on hepatic lipidomics in Chinese indigenous slow-growing broilers (Huaixiang chickens). The study includes two treatments, each treatment had 5 replicates with 4 broilers per cage, where a total of 40 eight-week-old female Huaixiang chickens (average initial body weight of 840.75 ± 20.79 g) were randomly divided into normal temperature (NT) and HS groups for 4 weeks, and the broilers of NT and HS groups were exposed to 21.3 ± 1.2℃ and 32.5 ± 1.4℃ respectively. The relative humidity of the two groups was maintained at 55%-70%. The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were conducted to evaluate the changes in hepatic lipidomics of broilers. The results showed that there were 12 differential metabolites between the two treatments. Compared with the NT group, HS group reduced the levers of hepatic phosphatidylcholine (PC) (16:0/16:0), PC (16:0/18:2), triglyceride (TG) (16:0/16:1/18:1), TG (18:0/18:1/20:4) (VIP > 1 and p < 0.05), while increased PC (18:1/20:3), PC (18:0/18:1), PC (18:1/18:1), PC (18:0/22:5), dimethyl-phosphatidyl ethanolamine (dMePE) (14:0/18:3), dMePE (18:0/18:1) and dMePE (16:0/20:3) levels (Variable Importance in the Projection; VIP > 1 and p < 0.05). In addition, according to the analysis of metabolic pathway, the pathways of linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism were involved in the effects of HS on hepatic lipid metabolism of broilers (p < 0.05). In conclusion, HS altered the hepatic lipid metabolism mainly through linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism pathway in indigenous broilers. These findings provided novel insights into the role of HS on hepatic lipidomics in Chinese indigenous broiler chickens.


Cholecystokinin induces crowing in chickens.

  • Tsuyoshi Shimmura‎ et al.
  • Scientific reports‎
  • 2019‎

Animals that communicate using sound are found throughout the animal kingdom. Interestingly, in contrast to human vocal learning, most animals can produce species-specific patterns of vocalization without learning them from their parents. This phenomenon is called innate vocalization. The underlying molecular basis of both vocal learning in humans and innate vocalization in animals remains unknown. The crowing of a rooster is also innately controlled, and the upstream center is thought to be localized in the nucleus intercollicularis (ICo) of the midbrain. Here, we show that the cholecystokinin B receptor (CCKBR) is a regulatory gene involved in inducing crowing in roosters. Crowing is known to be a testosterone (T)-dependent behavior, and it follows that roosters crow but not hens. Similarly, T-administration induces chicks to crow. By using RNA-sequencing to compare gene expression in the ICo between the two comparison groups that either crow or do not crow, we found that CCKBR expression was upregulated in T-containing groups. The expression of CCKBR and its ligand, cholecystokinin (CCK), a neurotransmitter, was observed in the ICo. We also showed that crowing was induced by intracerebroventricular administration of an agonist specific for CCKBR. Our findings therefore suggest that the CCK system induces innate vocalization in roosters.


Pathogenicity of Shigella in chickens.

  • Run Shi‎ et al.
  • PloS one‎
  • 2014‎

Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.


Helicobacter pullorum in chickens, Belgium.

  • Liesbeth M Ceelen‎ et al.
  • Emerging infectious diseases‎
  • 2006‎

A total of 110 broilers from 11 flocks were tested for Helicobacter pullorum by polymerase chain reaction; positive samples were reexamined with a conventional isolation method. H. pullorum isolates were examined by amplified fragment length polymorphism (AFLP) fingerprinting for interstrain genetic diversity and relatedness. Sixteen isolates from cecal samples from 2 different flocks were obtained. AFLP analysis showed that these isolates and 4 additional isolates from a different flock clustered according to their origin, which indicates that H. pullorum colonization may occur with a single strain that disseminates throughout the flock. Strains isolated from different hosts or geographic sources displayed a distinctive pattern. H. pullorum is present in approximately one third of live chickens in Belgium and may represent a risk to human health.


Generation of chickens expressing Cre recombinase.

  • Philip A Leighton‎ et al.
  • Transgenic research‎
  • 2016‎

Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.


Avian influenza outbreaks in chickens, Bangladesh.

  • Paritosh K Biswas‎ et al.
  • Emerging infectious diseases‎
  • 2008‎

To determine the epidemiology of outbreaks of avian influenza A virus (subtypes H5N1, H9N2) in chickens in Bangladesh, we conducted surveys and examined virus isolates. The outbreak began in backyard chickens. Probable sources of infection included egg trays and vehicles from local live bird markets and larger live bird markets.


Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens.

  • Yong Wang‎ et al.
  • Journal of animal science and biotechnology‎
  • 2016‎

To explore the relationship between the heart-type fatty acid binding protein (H-FABP) gene and intramuscular fat (IMF), a polymorphism of the second exon of the H-FABP gene was investigated in 60 Three-yellow chickens (TYCs) and 60 Hetian-black chickens (HTBCs).


Relationship between phylogenetic groups of Escherichia coli and Pathogenicity among Isolates from chickens with Colibacillosis and healthy chickens.

  • Toshiyuki Murase‎ et al.
  • Poultry science‎
  • 2022‎

Avian pathogenic Escherichia coli (APEC) is closely related to extraintestinal pathogenic E. coli, which are frequently assigned to specific phylogenetic groups (phylogroups). Therefore, we investigated the association between phylogroups of E. coli isolates and those recovered from commercial broiler and layer chickens with colibacillosis. We used 104 E. coli isolates from chickens with colibacillosis (hereafter referred to as "colibacillosis-related isolates"), 56 E. coli isolates obtained from fecal samples of clinically healthy broiler chickens, and 58 isolates obtained from environmental samples of layer chicken housing facilities where clinically healthy layer chickens were reared (hereafter referred to as "healthy chicken-related isolates"). The prevalence of phylogroup F among colibacillosis-related isolates was significantly (P < 0.05) higher than that among healthy chicken-related isolates, while phylogroups A and B1 were more frequently distributed in healthy chicken-related isolates. Fifty-seven (87%) of 65 colibacillosis-related isolates belonging to phylogroup F were defined as APEC based on the presence of virulence-associated genes according to a previously established criterion. In contrast, none of the healthy chicken-related isolates were defined as APEC. As evidenced by the chicken embryo lethality assay, 87 of the 92 healthy chicken-related isolates tested had embryo lethality rates of <30% and were considered avirulent, whereas 59 of the 104 colibacillosis-related isolates were considered virulent. Nonetheless, among isolates exhibiting embryo lethality rates of <30%, the mean lethality rate of embryos inoculated with colibacillosis-related isolates was significantly higher than that of embryos inoculated with healthy chicken-related isolates. These observations suggest that phylogroup F predicts colibacillosis among E. coli strains with virulence-associated genes.


The BAFF-Interacting receptors of chickens.

  • Shalini K Reddy‎ et al.
  • Developmental and comparative immunology‎
  • 2008‎

The TNF superfamily cytokine BAFF has crucial roles in homoeostatic regulation of B cell populations in mammals. Similar effects on peripheral B cells have been reported for chicken as for mammalian BAFF. Unlike mammalian BAFF, chicken BAFF is produced by B cells, implying an autocrine loop and consequent differences in regulation of B cell homoeostasis. Understanding of these mechanisms requires investigation of BAFF-binding receptors in chickens. We identified and characterised chicken receptors BAFFR and TACI, but found that the gene encoding the third BAFF-binding receptor, BCMA, was disrupted, implying differences in mechanisms for maintenance of long-lived antibody responses. A BAFFR-Ig fusion protein expressed in vivo lowered B cell numbers, showing that it was functional under physiological conditions. We found changes in the ratio of BAFFR and TACI mRNAs in the bursa after hatch that may account for the altered requirements for B cell survival at this stage of development.


Cecal microbiome profile of Hawaiian feral chickens and pasture-raised broiler (commercial) chickens determined using 16S rRNA amplicon sequencing.

  • Sudhir Yadav‎ et al.
  • Poultry science‎
  • 2021‎

This study investigated the taxonomic profile and abundance distribution of the bacterial community in the ceca of feral and pasture-raised broiler (commercial) chickens. Cecal content from feral and commercial chickens (n = 7 each) was collected, and total DNA was isolated. Next-Generation Sequencing (Illumina MiSeq) was performed to characterize the cecal microbiota. Specific bacteria explored were: Bacteroides, Bifidobacterium, Lactobacillus, Enterococcus, Escherichia, and Clostridium. At the phylum level, 92% of the bacteria belonged to Firmicutes, Bacteroidetes, and Proteobacteria for both feral and commercial chickens. The proportional abundance of Firmicutes was 55.3% and 63.3%, Bacteroidetes was 32.5% and 24.4%, and Proteobacteria was 7.0% and 5.9% in the feral and commercial chickens, respectively. The alpha-diversity Shannon index (P = 0.017) and Simpson index (P = 0.038) were significantly higher for commercial than for feral chickens. Predictive functional profiling by PICRUSt showed enriched microbial metabolic pathways for L-proline biosynthesis in the feral group (P < 0.01). There were a greater percentage of specific bacteria in the feral than commercial chickens, albeit with lower diversity but a more functional microbiota. In conclusion, feral birds have distinguished microbial communities, and further microbiome analysis is mandated to know the specific functional role of individual microbiota. The difference in microbiota level between feral and commercial birds could be accounted to the scavenging nature, diverse feed ingredients, and distinct rearing localities.


Environmental Impact on Differential Composition of Gut Microbiota in Indoor Chickens in Commercial Production and Outdoor, Backyard Chickens.

  • Zuzana Seidlerova‎ et al.
  • Microorganisms‎
  • 2020‎

In this study, we compared the caecal microbiota composition of egg-laying hens from commercial production that are kept indoors throughout their whole life with microbiota of hens kept outdoors. The microbiota of outdoor hens consisted of lower numbers of bacterial species than the microbiota of indoor hens. At the phylum level, microbiota of outdoor hens was enriched for Bacteroidetes (62.41 ± 4.47% of total microbiota in outdoor hens and 52.01 ± 6.27% in indoor hens) and Proteobacteria (9.33 ± 4.99% in outdoor and 5.47 ± 2.24% in indoor hens). On the other hand, Firmicutes were more abundant in the microbiota of indoor hens (33.28 ± 5.11% in indoor and 20.66 ± 4.41% in outdoor hens). Horizontally transferrable antibiotic resistance genes tetO, tet(32), tet(44), and tetW were also less abundant in the microbiota of outdoor hens than indoor hens. A comparison of the microbiota composition at the genus and species levels pointed toward isolates specifically adapted to the two extreme environments. However, genera and species recorded as being similarly abundant in the microbiota of indoor and outdoor hens are equally as noteworthy because these represent microbiota members that are highly adapted to chickens, irrespective of their genetics, feed composition, and living environment.


Assessing MHC-B diversity in Silkie chickens.

  • Katy J Tarrant‎ et al.
  • Poultry science‎
  • 2020‎

The major histocompatibility complex (MHC) is a highly polymorphic region on chromosome 16, which contains numerous immune response genes, and is known to influence disease susceptibility and resistance in chickens. Variability of MHC-B haplotypes in various well-known and commercially utilized breeds has previously been identified. This study aims to understand MHC-B diversity in the Silkie breed using a high-density SNP panel that encompasses the chicken MHC-B region. DNA was obtained from 74 females and 27 males from a commercial Silkie breeder colony that is maintained through minimal genetic selection practices. A previously described panel of 90 SNPs, all located within the MHC-B region, was used to evaluate MHC-B variability in the commercial Silkie breeder colony. MHC-B haplotypes identified from the individual SNP information in the Silkie colony were compared to published haplotypes from the same region. Of the 27 haplotypes identified in the Silkie population, 8 have been previously described. Nineteen haplotypes are unique to the Silkie population and include one novel recombinant and 2 additional possible novel recombinants. Six haplotypes were found at a frequency greater than 5% of the population, of which 4 are novel. Finally, Hardy Weinberg Equilibrium (HWE) was calculated for the observed haplotypes, which were found to be in HWE. This study shows considerable MHC-B diversity in the Silkie breed and adds further information on variability of the MHC-B region in the chicken.


Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens.

  • Ayano Hata‎ et al.
  • Scientific reports‎
  • 2021‎

In this study, we aimed to elucidate the origin of domestic chickens and their evolutionary history over the course of their domestication. We conducted a large-scale genetic study using mitochondrial DNA D-loop sequences and 28 microsatellite DNA markers to investigate the diversity of 298 wild progenitor red junglefowl (Gallus gallus) across two subspecies (G. g. gallus and G. g. spadiceus) from 12 populations and 138 chickens from 10 chicken breeds indigenous to Thailand. Twenty-nine D-loop sequence haplotypes were newly identified: 14 and 17 for Thai indigenous chickens and red junglefowl, respectively. Bayesian clustering analysis with microsatellite markers also revealed high genetic diversity in the red junglefowl populations. These results suggest that the ancestral populations of Thai indigenous chickens were large, and that a part of the red junglefowl population gene pool was not involved in the domestication process. In addition, some haplogroups that are distributed in other countries of Southeast Asia were not observed in either the red junglefowls or the indigenous chickens examined in the present study, suggesting that chicken domestication occurred independently across multiple regions in Southeast Asia.


Susceptibility of Chickens to Porcine Deltacoronavirus Infection.

  • Qingqing Liang‎ et al.
  • Viruses‎
  • 2019‎

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV.


Chickens productivity selection affects immune system genes.

  • А М Borodin‎ et al.
  • Vavilovskii zhurnal genetiki i selektsii‎
  • 2020‎

The quantitative trait loci associated with the immune properties of chickens are of interest from the point of view of obtaining animals resistant to infectious agents using marker-assisted selection. In the process of selecting markers for genomic selection in broiler-type chickens, a non-standard genotype frequency of the RACK1 gene allele (SNP Gga_rs15788101) in the B5 line of broiler-type chicken cross Smena 8 was identified and it was suggested that this gene was involved in selection. Therefore, it was decided to investigate the available polymorphisms in the three genes responsible for the IgY titer (DMA, RACK1 and CD1B). Molecular typing of single nucleotide polymorphisms of three loci revealed an approach to fixation of the unfavorable allele of the DMA gene (SNP Gga_rs15788237), an approach to fixation of the unfavorable allele of the RACK1 gene and the prevalence of the favorable CD1B gene allele (SNP Gga_rs16057130). Analysis of the haplotypes revealed a strong linkage disequilibrium of these genes. This suggests that these genes experience selection pressure. Analysis of the protein-coding sequences of the CD1B and DMA genes of various breeds of chickens revealed a negative selection of these genes. In order to understand whether the fixation of the studied alleles is the result of artificial selection of the B5 line of the cross Smena 8, an analysis of similar loci in layer chickens Hisex White was carried out. The frequencies of the alleles at the loci of the CD1B gene (Gga_rs16057130) and the RACK1 gene (Gga_rs15788101) in the Hisex White chicken genome differ from the frequencies of the alleles obtained for chickens of the B5 line of the cross Smena 8. It can be assumed that the fixation of the allele in the DMA gene (SNP Gga_rs15723) is associated with artificial or natural selection, consistent in broilers and layers. Changes in the loci Gga_rs16057130 and Gga_rs15788101 in the B5 line of the Smena 8 chickens are most likely associated with artificial selection of broiler productivity traits, which can subsequently lead to fixation of alleles at these loci. Artificial breeding of chickens leads to degradation of the variability of genes encoding elements of the immune system, which can cause a decrease in resistance to various diseases. The study of the negative impact of selection of economic traits on immunity should provide means to mitigate negative consequences and help find ways to obtain disease-resistant animals.


Genetic structure and characteristics of Tibetan chickens.

  • Shijun Li‎ et al.
  • Poultry science‎
  • 2023‎

Tibetan chicken is one of the most common and widely distributed highland breeds, and is often used as a model organism for understanding genetic adaptation to extreme environments in Tibet. Despite its apparent geographical diversity and large variations in plumage patterns, the genetic differences within breed were not accounted for in most studies and have not been systematically investigated. In order to reveal and genetically differentiate the current existing TBC sub-populations that might have major implications for genomic research in TBCs, we systematically evaluated the population structure and demography of current TBC populations. Based on 344 whole-genome sequenced birds including 115 Tibetan chickens that were mostly sampled from family-farms across Tibet, we revealed a clear separation of Tibetan chickens into 4 sub-populations that broadly aligns with their geographical distribution. Moreover, population structure, population size dynamics, and the extent of admixture jointly suggest complex demographic histories of these sub-populations, including possible multiple origins, inbreeding, and introgressions. While most of the candidate selected regions found between the TBC sub-populations and Red Jungle fowls were nonoverlapping, 2 genes RYR2 and CAMK2D were revealed as strong selection candidates in all 4 sub-populations. These 2 previously identified high altitude associated genes indicated that the sub-populations responded to similar selection pressures in an independent but functionally similar fashion. Our results demonstrate robust population structure in Tibetan chickens that will help inform future genetic analyses on chickens and other domestic animals alike in Tibet, recommending thoughtful experimental design.


Computed tomography of the spleen in chickens.

  • Yasamin Vali‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

The avian spleen is an important immune organ in birds and its size can be used as an index of immune system responses in different conditions. Based on the lack of knowledge in computed tomography of the spleen in chickens, the present study was conducted to assess the inter-and intraobserver reliability in the measurement of the spleen dimensions and attenuation, as well as the feasibility of utilization of these measurements as a predictor of different diseases. For these purposes, the spleens of 47 chickens were included in the study. Two observers measured the dimensions and attenuations of the spleen, which were finally compared with the clinical diagnosis. The results showed an excellent interobserver reliability in the length, width, and height of the spleen (ICC: 0.944, 0.906, and 0.938, retrospectively), and a good interobserver reliability was observed during the evaluation of the average Hounsfield units of the spleen (ICC: 0.818). The intraobserver reliability was excellent in all the measurements (ICC > 0.940). Additionally, no statistical differences were detected in the spleen size and attenuation between the normal and diseased groups. Based on the present results, the computed tomographic measurements of the spleen could not predict the clinical diseases of the chickens; however, the low rates of the inter- and intraobserver variability suggest the reliable utilization of these computed tomographic measurements in routine clinical application and follow-up examinations.


Purinergic signaling during Marek's disease in chickens.

  • Haji Akbar‎ et al.
  • Scientific reports‎
  • 2023‎

Purinergic receptors (PRs) have been reported as potential therapeutic targets for many viral infections including herpesviruses, which urges the investigation into their role in Marek's disease (MD), a herpesvirus induced cancer in chickens that is an important pathogen for the poultry industry. MD is caused by MD virus (MDV) that has a similar viral life cycle as human varicella zoster virus in that it is shed from infected epithelial skin cells and enters the host through the respiratory route. In this report, PR responses during natural MDV infection and disease progression was examined in MD-resistant white Leghorns (WL) and MD-susceptible Pure Columbian (PC) chickens during natural infection. Whole lung lavage cells (WLLC) and liver tissue samples were collected from chickens infected but showing no clinical signs of MD (Infected) or presenting with clinical disease (Diseased). RNA was extracted followed by RT-qPCR analysis with gene specific primers against members of the P1, P2X, and P2Y PR families. Differential expression (p < 0.05) was observed in breed and disease conditions. Some PRs showed tissue specific expression (P1A1, P2X1, and P2X6 in WLLC) whereas others responded to MDV infection only in MD-susceptible (PC) chickens (P1A2A, P2X1, P2X5, P2X7). P2Y PRs had differential expression in both chicken lines in response to MDV infection and MD progression. This study is the first to our knowledge to examine PR responses during MDV infection and disease progression. These results suggest PR signaling may an important area of research for MDV replication and MD.


Development of lymphocyte subpopulations in local breed chickens.

  • Adil Sabr Al-Ogaili‎ et al.
  • Veterinary world‎
  • 2021‎

Local breeds of chicken are known to have relatively higher disease resistance to many endemic diseases and diseases that are highly virulent in commercial chickens. This study aimed to address the lymphocyte subpopulations in three constitutive immune system organs (thymus, bursa of Fabricius, and spleen) in 30, 8-week-old, male local breed chickens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: