Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Environmental drivers of Cheirogaleidae population density: Remarkable resilience of Madagascar's smallest lemurs to habitat degradation.

  • Daniel Hending‎
  • Ecology and evolution‎
  • 2021‎

Global animal populations are in decline due to destruction and degradation of their natural habitat. Understanding the factors that determine the distribution and density of threatened animal populations is therefore now a crucial component of their study and conservation. The Cheirogaleidae are a diverse family of small-bodied, nocturnal lemurs that are widespread throughout the forests of Madagascar. However, many cheirogaleid lemurs are now highly threatened with extinction and the environmental factors that determine their distribution and population density are still little known. Here, I investigated the environmental drivers of Cheirogaleidae population density at genus level.


Agent-mediated spatial storage effect in heterogeneous habitat stabilizes competitive mouse lemur coexistence in Menabe Central, Western Madagascar.

  • Livia Schäffler‎ et al.
  • BMC ecology‎
  • 2015‎

Spatio-temporal distribution patterns of species in response to natural and anthropogenic drivers provide insight into the ecological processes that determine community composition. We investigated determinants of ecological structure in a species assemblage of 4 closely related primate species of the family Cheirogaleidae (Microcebus berthae, Microcebus murinus, Cheirogaleus medius, Mirza coquereli) in western Madagascar by extensive line transect surveys across spatial and temporal heterogeneities with the specific goal of elucidating the mechanisms stabilizing competitive coexistence of the two mouse lemur species (Microcebus spp.).


An alu-based phylogeny of lemurs (infraorder: Lemuriformes).

  • Adam T McLain‎ et al.
  • PloS one‎
  • 2012‎

LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera.


A conceptual framework for assessing behavioral flexibility of species in response to extreme climatic events.

  • Eric I Ameca‎ et al.
  • Scientific reports‎
  • 2023‎

Inherent differences in the adaptive capacity of species to flexibly respond to extreme climatic events (ECEs) represent a key factor in their survivorship. We introduce and apply a conceptual framework linking knowledge about species' current ecology and biology with variation in behavioral flexibility to ECEs. We applied it to 199 non-human primate species currently exposed to cyclones across the global tropics. Our findings suggest that species characterized by an increased ability to exploit a broad range of food types, social systems that permit subgrouping, and habitat types that span a range of environmental conditions may have greater success in coping with cyclones than more narrowly constrained or less adaptable primates. Overall, 15% of species, predominantly of the families Atelidae and Cercopithecidae, were assessed as having high or very high flexibility. In contrast, ~ 60% of primates were assessed with low or very low flexibility. These were species mainly belonging to the Cheirogaleidae, Lemuridae, Lepilemuridae, and Indriidae. While much work remains to better understand mechanisms driving differences in behavioral flexibility of species exposed to extreme climate across vertebrate lineages, our framework provides a workable approach that can improve estimates of current vulnerability to these phenomena and better inform conservation and management strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: