Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Effect of ceruletide on pituitary-hypothalamic peptides and on emotion in man.

  • N Basso‎ et al.
  • Peptides‎
  • 1981‎

In order to clarify the mechanism of the analgesic effect of ceruletide (CRL), the peptides B-endorphin (BE), ACTH, prolactin (PRL), growth hormone (GH) and substance P were determined in the basal state and following IV CRL administration in 11 patients. CRL, at the dose of 2 ng/kg/min, significantly augmented BE levels in the plasma, and in CSF. Substance P levels were significantly augmented by CRL in the plasma, while ACTH levels were significantly augmented in CSF. GH and PRL levels were not affected by CRL. Placebo had no effect on any of the measured peptides. The effect of CRL on mood and anxiety, known to be affected by opioids, was studied in 14 patients with psychogenic headache. The effect of histamine induced headache on State trait anxiety inventory and on Mood adjective check list was studied before and after administration of placebo or CRL. CRL significantly diminished anxiety when compared to placebo. Elation, surgency and egotism were significantly augmented while skepticism was significantly diminished by CRL. The CRL effect on mood and pain may be mediated by augmented levels of neurohormones both in the plasma and in CSF.


RORγt inhibitor SR1001 alleviates acute pancreatitis by suppressing pancreatic IL-17-producing Th17 and γδ-T cells in mice with ceruletide-induced pancreatitis.

  • Jianfa Wang‎ et al.
  • Basic & clinical pharmacology & toxicology‎
  • 2021‎

The management of acute pancreatitis (AP) remains a challenge to clinicians worldwide for limited effective interventions. Retinoid orphan receptor gamma t (RORγt) is a therapeutic target for several diseases; however, it is unclear whether inhibiting RORγt can ameliorate AP. The relative expression of RORγt, IL-17 and IL-23 in the peripheral blood mononuclear cells of AP patients was measured by RT-PCR. An AP mouse model was induced by ceruletide, and SR1001 was injected before ceruletide administration. RORγt+ cells, T helper 17 cells (Th17), regulatory T cells (Tregs) and γδ T cells were assessed in the pancreas and spleen by flow cytometry. Higher RORγt expression in patients indicated the potential role of RORγt in AP progression. Analyses of the IL-17/IL-23 axis confirmed its role. SR1001 significantly alleviated AP histologically in the mouse model. Serum levels of amylase, IL-6, TNFalpha, IL-17 and IL-23 decreased upon SR1001 treatment. SR1001 selectively decreased the number of RORγt+, Th17, Tregs and γδ T cells in the pancreas but not the spleen. Collectively, these results showed that SR1001 exerted therapeutic effects on AP by suppressing IL-17-secreting Th17 and γδ T cells in the pancreas. Thus, SR1001 may be a promising drug for the treatment of AP in the clinic.


Lapiferin protects against H1N1 virus-induced pulmonary inflammation by negatively regulating NF-kB signaling.

  • Lishu Pei‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2020‎

H1N1 virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. There is currently no effective strategy against virus infection in lung. The present study evaluated the protective roles of a natural compound, lapiferin, in H1N1 virus-induced pulmonary inflammation in mice and in cultured human bronchial epithelial cells. Initially, Balb/C mice were grouped as Control, H1N1 infection (intranasally infected with 500 plaque-forming units of H1N1 virus), lapiferin (10 mg/kg), and H1N1+lapiferin (n=10/group). Lung histology, expression of inflammatory factors, and survival rates were assessed after 14 days of exposure. Administration of lapiferin significantly alleviated the virus-induced inflammatory infiltrate in lung tissues. Major pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, were decreased at both mRNA and protein levels by lapiferin administration in the lung homogenate. Lapiferin also reduced inflammatory cell numbers in bronchoalveolar fluid. Mechanistically, lapiferin suppressed the transcriptional activity and protein expression of NF-κB p65, causing inhibition on NF-κB signaling. Pre-incubation of human bronchial epithelial cells with an NF-κB signaling specific activator, ceruletide, significantly blunted lapiferin-mediated inhibition of pro-inflammatory cytokines secretion in an air-liquid-interface cell culture experiment. Activation of NF-κB signaling also blunted lapiferin-ameliorated inflammatory infiltrate in lungs. These results suggested that lapiferin was a potent natural compound that served as a therapeutic agent for virus infection in the lung.


Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children.

  • Laurens F M Verscheijden‎ et al.
  • PLoS computational biology‎
  • 2021‎

Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day- 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: