Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 806 papers

Azido-Ceramides, a Tool to Analyse SARS-CoV-2 Replication and Inhibition-SARS-CoV-2 Is Inhibited by Ceramides.

  • Daniela Brenner‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.


Ceramides bind VDAC2 to trigger mitochondrial apoptosis.

  • Shashank Dadsena‎ et al.
  • Nature communications‎
  • 2019‎

Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.


Sphingolipids and ceramides in human aqueous humor.

  • Ayman J Aljohani‎ et al.
  • Molecular vision‎
  • 2013‎

To determine the differential profiles of sphingomyelin, sphingoid base, sphingoid base-1-phosphate and ceramide lipid species and their quantitative differences between control and glaucomatous aqueous humor (AQH) derived from human donors.


Ceramides and sphingomyelinases in senile plaques.

  • Maï Panchal‎ et al.
  • Neurobiology of disease‎
  • 2014‎

The senile plaque is a hallmark lesion of Alzheimer disease (AD). We compared, without a priori, the lipidome of the senile plaques and of the adjacent plaque-free neuropil. The analysis by liquid chromatography coupled with electrospray ionization mass spectrometry revealed that laser microdissected senile plaques were enriched in saturated ceramides Cer(d18:1/18:0) and Cer(d18:1/20:0) by 33 and 78% respectively with respect to the surrounding neuropil. This accumulation of ceramides was not explained by their affinity for Aβ deposits: no interaction between ceramide-liposomes and Aβ fibrils was observed in vitro by surface plasmon resonance and fluorescent ceramide-liposomes showed no affinity for the senile plaques in AD brain tissue. Accumulation of ceramides could be, at least partially, the result of a local production by acid and neutral sphingomyelinases that we found to be present in the corona of the senile plaques.


Interaction of ceramides and tear lipocalin.

  • Ben J Glasgow‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2018‎

The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.


Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth.

  • Daniela Hartmann‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2012‎

Ceramides are known to be key players in intracellular signaling and are involved in apoptosis, cell senescence, proliferation, cell growth and differentiation. They are synthesized by ceramide synthases (CerS). So far, six different mammalian CerS (CerS1-6) have been described. Recently, we demonstrated that human breast cancer tissue displays increased activity of CerS2, 4, and 6, together with enhanced generation of their products, ceramides C(16:0), C(24:0), and C(24:1). Moreover, these increases were significantly associated with tumor dignity. To clarify the impact of this observation, we manipulated cellular ceramide levels by overexpressing ceramide synthases 2, 4 or 6 in MCF-7 (breast cancer) and HCT-116 (colon cancer) cells, respectively. Overexpression of ceramide synthases 4 and 6 elevated generation of short chain ceramides C(16:0), C(18:0) and C(20:0), while overexpression of ceramide synthase 2 had no effect on ceramide production in vivo, presumably due to limited substrate availability, because external addition of very long chain acyl-CoAs resulted in a significant upregulation of very long chain ceramides. We also demonstrated that upregulation of CerS4 and 6 led to the inhibition of cell proliferation and induction of apoptosis, whereas upregulation of CerS2 increased cell proliferation. On the basis of our data, we propose that a disequilibrium between ceramides of various chain length is crucial for cancer progression, while normal cells require an equilibrium between very long and long chain ceramides for normal physiology.


Ceramides: a potential therapeutic target in pulmonary emphysema.

  • Jeroen Tibboel‎ et al.
  • Respiratory research‎
  • 2013‎

The aim of this manuscript was to characterize airway ceramide profiles in a rodent model of elastase-induced emphysema and to examine the effect of pharmacological intervention directed towards ceramide metabolism.


The ERAD system is restricted by elevated ceramides.

  • Jiwon Hwang‎ et al.
  • Science advances‎
  • 2023‎

Misfolded proteins in the endoplasmic reticulum (ER) are removed through a process known as ER-associated degradation (ERAD). ERAD occurs through an integral membrane protein quality control system that recognizes substrates, retrotranslocates the substrates across the membrane, and ubiquitinates and extracts the substrates from the membrane for degradation at the cytosolic proteasome. While ERAD systems are known to regulate lipid biosynthetic enzymes, the regulation of ERAD systems by the lipid composition of cellular membranes remains unexplored. Here, we report that the ER membrane composition influences ERAD function by incapacitating substrate extraction. Unbiased lipidomic profiling revealed that elevation of specific very-long-chain ceramides leads to a marked increase in the level of ubiquitinated substrates in the ER membrane and concomitantly reduces extracted substrates in the cytoplasm. This work reveals a previously unrecognized mechanism in which ER membrane lipid remodeling changes the activity of ERAD.


Transient relaxation of rat mesenteric microvessels by ceramides.

  • Peter Czyborra‎ et al.
  • British journal of pharmacology‎
  • 2002‎

We have investigated the vasodilating effects of D-erythro-C2-ceramide (C2-ceramide) in methoxamine-contracted rat mesenteric microvessels. C2-ceramide (10 - 100 microM) caused a concentration-dependent, slowly developing relaxation which reached maximum values after approximately 10 min and partially abated thereafter. Endothelium removal or inhibitors of guanylyl cyclase (3 microM ODQ), protein kinase A (10 microM H7, 1 microM H89) and various types of K(+) channels (10 microM BaCl(2), 3 mM tetraethylammonium, 30 nM charybdotoxin, 30 nM iberiotoxin, 300 nM apamine, 10 microM glibenclamide) had only small if any inhibitory effects against C2-ceramide-induced vasodilation, but some of them attenuated vasodilation by sodium nitroprusside or isoprenaline. A combination of ODQ and charybdotoxin almost completely abolished C2-ceramide-induced vasodilation. A second administration of C2-ceramide caused a detectable but weaker relaxation. L-threo-C2-ceramide (100 microM), which should not be a substrate to ceramide metabolism, had no biphasic time course. The ceramidase inhibitor (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (100 microM) alone caused some vasodilation, indicating vasodilation by endogenous ceramides, and also hastened relaxation by exogenous C2-ceramide. The late-developing reversal of C2-ceramide-induced vasodilation was absent when alpha-adrenergic tone was removed by addition of 10 microM phentolamine. We conclude that C2-ceramide relaxes rat resistance vessels in an endothelium-independent manner which is prevented only by combined inhibition of guanylyl cyclase and charybdotoxin-sensitive K(+) channels. The vasodilation abates with time partly due to desensitization of the ceramide response and partly due to metabolism of C2-ceramide to an inactive metabolite.


Blood-brain barrier permeability analysis of plant ceramides.

  • Koichi Eguchi‎ et al.
  • PloS one‎
  • 2020‎

Ceramides, a type of sphingolipid, are cell membrane components and lipid mediators that modulate a variety of cell functions. In plants, ceramides are mostly present in a glucosylated glucosylceramide (GlcCer) form. We previously showed that oral administration of konjac-derived GlcCer to a mouse model of Alzheimer's disease reduced brain amyloid-β and amyloid plaques. Dietary plant GlcCer compounds are absorbed as ceramides, but it is unclear whether they can cross the blood-brain barrier (BBB). Herein, we evaluated the BBB permeability of synthetic plant-type ceramides (4, 8-sphingadienine, d18:2) using mouse and BBB cell culture models, and found that they could permeate the BBB both in vivo and in vitro. In addition, administrated ceramides were partially metabolized to other sphingolipid species, namely sphingomyelin (SM) and GlcCer, while crossing the BBB. Thus, plant ceramides can cross the BBB, suggesting that ceramides and their metabolites might affect brain functions.


Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides.

  • Matthijs Kol‎ et al.
  • eLife‎
  • 2019‎

Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells. Combining atomic force microscopy on model bilayers with metabolic tracing studies in cells, we demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. Our findings disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.


Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids.

  • Emilio J González-Ramírez‎ et al.
  • Scientific reports‎
  • 2019‎

The properties of bilayers composed of pure brain cerebroside (bCrb) or of binary mixtures of bCrb with brain ceramide, cholesterol, egg phosphatidylcholine or brain sphingomyelin have been studied using a combination of physical techniques. Pure bCrb exhibits a rather narrow gel-fluid transition centred at ≈65 °C, with a half-width at half-height T1/2 ≈ 3 °C. bCrb mixes well with both fluid and gel phospholipids and ceramide, and it rigidifies bilayers of egg phosphatidylcholine or brain sphingomyelin when the latter are in the fluid state. Cholesterol markedly widens the bCrb gel-fluid transition, while decreasing the associated transition enthalpy, in the manner of cholesterol mixtures with saturated phosphatidylcholines, or sphingomyelins. Laurdan and DPH fluorescence indicate the formation of fluid ordered phases in the bCrb:cholesterol mixtures. Macroscopic phase separation of more and less fluid domains is observed in giant unilamellar vesicles consisting of bCrb:egg phosphatidylcholine or bCrb:sphingomyelin. Crb capacity to induce bilayer permeabilization or transbilayer (flip-flop) lipid motion is much lower than those of ceramides. The mixtures explored here contained mostly bCrb concentrations >50 mol%, mimicking the situation of cell membranes in Gaucher's disease, or of the Crb-enriched microdomains proposed to exist in healthy cell plasma membranes.


Serum ceramides in early pregnancy as predictors of gestational diabetes.

  • Sanna Mustaniemi‎ et al.
  • Scientific reports‎
  • 2023‎

Ceramides contribute to the development of type 2 diabetes but it is uncertain whether they predict gestational diabetes (GDM). In this multicentre case-control study including 1040 women with GDM and 958 non-diabetic controls, early pregnancy (mean 10.7 gestational weeks) concentrations of four ceramides-Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1)-were determined by a validated mass-spectrometric method from biobanked serum samples. Traditional lipids including total cholesterol, LDL, HDL and triglycerides were measured. Logistic and linear regression and the LASSO logistic regression were used to analyse lipids and clinical risk factors in the prediction of GDM. The concentrations of four targeted ceramides and total cholesterol, LDL and triglycerides were higher and HDL was lower among women with subsequent GDM than among controls. After adjustments, Cer(d18:1/24:0), triglycerides and LDL were independent predictors of GDM, women in their highest quartile had 1.44-fold (95% CI 1.07-1.95), 2.17-fold (95% CI 1.57-3.00) and 1.63-fold (95% CI 1.19-2.24) odds for GDM when compared to their lowest quartiles, respectively. In the LASSO regression modelling ceramides did not appear to markedly improve the predictive performance for GDM alongside with clinical risk factors and triglycerides. However, their adverse alterations highlight the extent of metabolic disturbances involved in GDM.


Cell-intrinsic ceramides determine T cell function during melanoma progression.

  • Matthias Hose‎ et al.
  • eLife‎
  • 2022‎

Acid sphingomyelinase (Asm) and acid ceramidase (Ac) are parts of the sphingolipid metabolism. Asm hydrolyzes sphingomyelin to ceramide, which is further metabolized to sphingosine by Ac. Ceramide generates ceramide-enriched platforms that are involved in receptor clustering within cellular membranes. However, the impact of cell-intrinsic ceramide on T cell function is not well characterized. By using T cell-specific Asm- or Ac-deficient mice, with reduced or elevated ceramide levels in T cells, we identified ceramide to play a crucial role in T cell function in vitro and in vivo. T cell-specific ablation of Asm in Smpd1fl/fl/Cd4cre/+ (Asm/CD4cre) mice resulted in enhanced tumor progression associated with impaired T cell responses, whereas Asah1fl/fl/Cd4cre/+ (Ac/CD4cre) mice showed reduced tumor growth rates and elevated T cell activation compared to the respective controls upon tumor transplantation. Further in vitro analysis revealed that decreased ceramide content supports CD4+ regulatory T cell differentiation and interferes with cytotoxic activity of CD8+ T cells. In contrast, elevated ceramide concentration in CD8+ T cells from Ac/CD4cre mice was associated with enhanced cytotoxic activity. Strikingly, ceramide co-localized with the T cell receptor (TCR) and CD3 in the membrane of stimulated T cells and phosphorylation of TCR signaling molecules was elevated in Ac-deficient T cells. Hence, our results indicate that modulation of ceramide levels, by interfering with the Asm or Ac activity has an effect on T cell differentiation and function and might therefore represent a novel therapeutic strategy for the treatment of T cell-dependent diseases such as tumorigenesis.


Ceramides improve cardiovascular risk prediction beyond low-density lipoprotein cholesterol.

  • Andreas Leiherer‎ et al.
  • European heart journal open‎
  • 2024‎

Low-density lipoprotein cholesterol (LDL-C) is the best documented cardiovascular risk predictor and at the same time serves as a target for lipid-lowering therapy. However, the power of LDL-C to predict risk is biased by advanced age, comorbidities, and medical treatment, all known to impact cholesterol levels. Consequently, such biased patient cohorts often feature a U-shaped or inverse association between LDL-C and cardiovascular or overall mortality. It is not clear whether these constraints for risk prediction may likewise apply to other lipid risk markers in particular to ceramides and phosphatidylcholines.


Plasma ceramides independently predict all-cause mortality in men aged 85.

  • Timo E Strandberg‎ et al.
  • Age and ageing‎
  • 2022‎

assessing cardiovascular and mortality risk with conventional biomarkers is challenging in oldest-old due to multimorbidity and polypharmacy. Ceramides are bioactive lipids shown to predict mortality in late middle-aged cohorts.


Early postoperative changes of sphingomyelins and ceramides after laparoscopic sleeve gastrectomy.

  • Hakan Özer‎ et al.
  • Lipids in health and disease‎
  • 2018‎

This study aimed to determine early postoperative changes of serum sphingomyelin (SM) and ceramide (CER) species following laparoscopic sleeve gastrectomy (LSG).


Periplocymarin Alleviates Doxorubicin-Induced Heart Failure and Excessive Accumulation of Ceramides.

  • Weijing Yun‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Doxorubicin-driven cardiotoxicity could result in dilated cardiomyopathy and heart failure (HF). Previously, we showed that periplocymarin exerted a cardiotonic role by promoting calcium influx and attenuating myocardial fibrosis induced by isoproterenol (ISO) by improving the metabolism of cardiomyocytes. However, the impact of periplocymarin on doxorubicin (DOX)-triggered cardiomyopathy has not been investigated. In the current study, C57BL/6 mice were randomly divided into three groups, namely, the control, DOX, and DOX+periplocymarin groups. The cardiac function and apoptosis were measured. Our results revealed that periplocymarin administration greatly improved the DOX-induced cardiac dysfunction manifested by the ejection fraction (EF%), fractional shortening (FS%), left ventricular posterior wall thickness (LVPW), left ventricular anterior wall thickness (LVAW), left ventricular (LV) mass, and attenuated DOX-induced cardiomyocyte apoptosis assessed by hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blotting. Further study using H9c2 cells revealed that the pretreatment of periplocymarin suppressed DOX-induced apoptosis evidenced by annexin V staining. Moreover, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that DOX lead to an accumulation in serum ceramide, and the pre-treatment of periplocymarin could reverse this phenomenon. Network pharmacology also demonstrated that ceramide metabolism was involved in the process. Consistently, real-time PCR showed that periplocymarin significantly abolished the induction of the genes involved in the de novo synthesis of ceramide, i.e., CerS2, CerS4, CerS5, and CerS6, and the induction was attributed to the treatment of DOX. Collectively, these results suggested that periplocymarin reduced cardiomyocyte apoptosis to protect hearts from DOX-induced cardiotoxicity and the de novo synthesis of ceramides was involved in this process.


Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer.

  • Adam R Markowski‎ et al.
  • Biomolecules‎
  • 2020‎

Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.


Biophysical properties of novel 1-deoxy-(dihydro)ceramides occurring in mammalian cells.

  • Noemi Jiménez-Rojo‎ et al.
  • Biophysical journal‎
  • 2014‎

Ceramides and dihydroceramides are N-acyl derivatives of sphingosine and sphinganine, respectively, which are the major sphingoid-base backbones of mammals. Recent studies have found that mammals, like certain other organisms, also produce 1-deoxy-(dihydro)ceramides (1-deoxyDHCers) that contain sphingoid bases lacking the 1-hydroxyl- or 1-hydroxymethyl- groups. The amounts of these compounds can be substantial-indeed, we have found comparable levels of 1-deoxyDHCers and ceramides in RAW 264.7 cells maintained in culture. The biophysical properties of 1-deoxyDHCers have not yet been reported, although these lipids might play important roles in normal cell regulation and in the pathology of diseases in which they are elevated, such as hereditary sensory autonomic neuropathies or diabetes. This study uses several approaches, including surface-pressure measurements, differential scanning calorimetry, and confocal microscopy, to study the behavior of 1-deoxyDHCers of different N-acyl-chain lengths and their interaction with sphingomyelin (SM). The thermotropic behaviors of 1-deoxyDHCers alone and in mixtures with SM are described, together with their interactions in monolayers and giant unilamellar vesicles. The gel-fluid transition temperatures of the pure compounds increase in the order 1-deoxyceramide < ceramide ≈ 1-deoxyDHCer < 1-(deoxymethyl)DHCer. In general, canonical ceramides are more miscible with SM in bilayers than are 1-deoxyceramides, and 1-(deoxymethyl)DHCers are the most hydrophobic among them, not even capable of forming monolayers at the air-water interface. Thus, these properties suggest that 1-deoxyDHCer can influence the properties of cellular membranes in ways that might affect biological function/malfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: