Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 13,043 papers

Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation.

  • Yohei Yomogida‎ et al.
  • ACS omega‎
  • 2018‎

Tungsten disulfide (WS2) nanotubes are cylindrical, multiwall nanotubes with various diameters and wall numbers. They can exhibit various unique properties depending on their structures and thus preparing samples with uniform structures is important for understanding their basic properties and applications. However, most synthesis methods have difficulty to prepare uniform samples, and thus, a purification method to extract nanotubes with a selected diameter and wall number must be developed. Here, we demonstrate a solution-based purification of WS2 nanotubes using a surfactant solution. Stable dispersions of nanotubes were prepared using nonionic surfactants, which enabled us to sort the diameters and wall numbers of the nanotubes through a centrifugation process. By optimizing the conditions, we successfully obtained thin nanotubes with a mean diameter of 32 nm and mean wall number of 13 with relatively small distributions. Finally, we clarified the relationships between the structure and optical properties of the nanotubes.


Density Gradient Centrifugation-Independent Purification of Human Basophils.

  • Natalie Gray‎ et al.
  • Current protocols‎
  • 2024‎

Basophils represent the rarest type of granulocyte in human peripheral blood. Thus, researching basophils has historically been challenging and has often been reliant on enrichment protocols using density gradient centrifugation. This article describes a novel, fast, and cost-effective method to purify highly viable human basophils from peripheral blood through negative immunomagnetic selection, foregoing the density centrifugation step in the Basic Protocol. The technique is easy to use and consistently produces purities >96%. Furthermore, the Support Protocols describe procedures to determine basophil yield, purity, and viability, and how to investigate functional activity of the purified basophils through flow cytometry and visualize the basophils through microscopy. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Gradient centrifugation-independent basophil isolation Support Protocol 1: Flow cytometry staining to assess basophil yield, purity, and viability Support Protocol 2: Giemsa staining Support Protocol 3: Calcium flux analysis Support Protocol 4: Basophil activation test.


New device for sperm preparation involving migration-gravity sedimentation without centrifugation compared with density-gradient centrifugation for normozoospermic intrauterine insemination.

  • Kenichi Tatsumi‎ et al.
  • F&S reports‎
  • 2020‎

To investigate the efficacy of a new device for sperm preparation involving migration-gravity sedimentation without centrifugation (MIGLIS), compared with density-gradient centrifugation (DGC) for normozoospermic intrauterine insemination (IUI).


Pentapartite fractionation of particles in oral fluids by differential centrifugation.

  • Chiho Hiraga‎ et al.
  • Scientific reports‎
  • 2021‎

Oral fluids (OFs) contain small extracellular vesicles (sEVs or exosomes) that carry disease-associated diagnostic molecules. However, cells generate extracellular vesicles (EVs) other than sEVs, so the EV population is quite heterogeneous. Furthermore, molecules not packaged in EVs can also serve as diagnostic markers. For these reasons, developing a complete picture of particulate matter in the oral cavity is important before focusing on specific subtypes of EVs. Here, we used differential centrifugation to fractionate human OFs from healthy volunteers and patients with oral squamous cell carcinoma into 5 fractions, and we characterized the particles, nucleic acids, and proteins in each fraction. Canonical exosome markers, including CD63, CD9, CD133, and HSP70, were found in all fractions, whereas CD81 and AQP5 were enriched in the 160K fraction, with non-negligible amounts in the 2K fraction. The 2K fraction also contained its characteristic markers that included short derivatives of EGFR and E-cadherin, as well as an autophagosome marker, LC3, and large multi-layered vesicles were observed by electronic microscopy. Most of the DNA and RNA was recovered from the 0.3K and 2K fractions, with some in the 160K fraction. These results can provide guideline information for development of purpose-designed OF-based diagnostic systems.


High-speed centrifugation induces aggregation of extracellular vesicles.

  • Romain Linares‎ et al.
  • Journal of extracellular vesicles‎
  • 2015‎

Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.


Density gradient centrifugation compromises bone marrow mononuclear cell yield.

  • Claudia Pösel‎ et al.
  • PloS one‎
  • 2012‎

Bone marrow mononuclear cells (BMNCs) are widely used in regenerative medicine, but recent data suggests that the isolation of BMNCs by commonly used Ficoll-Paque density gradient centrifugation (DGC) causes significant cell loss and influences graft function. The objective of this study was to determine in an animal study whether and how Ficoll-Paque DGC affects the yield and composition of BMNCs compared to alternative isolation methods such as adjusted Percoll DGC or immunomagnetic separation of polymorphonuclear cells (PMNs). Each isolation procedure was confounded by a significant loss of BMNCs that was maximal after Ficoll-Paque DGC, moderate after adjusted Percoll DGC and least after immunomagnetic PMN depletion (25.6±5.8%, 51.5±2.3 and 72.3±6.7% recovery of total BMNCs in lysed bone marrow). Interestingly, proportions of BMNC subpopulations resembled those of lysed bone marrow indicating symmetric BMNC loss independent from the isolation protocol. Hematopoietic stem cell (HSC) content, determined by colony-forming units for granulocytes-macrophages (CFU-GM), was significantly reduced after Ficoll-Paque DGC compared to Percoll DGC and immunomagnetic PMN depletion. Finally, in a proof-of-concept study, we successfully applied the protocol for BMNC isolation by immunodepletion to fresh human bone marrow aspirates. Our findings indicate that the common method to isolate BMNCs in both preclinical and clinical research can be considerably improved by replacing Ficoll-Paque DGC with adapted Percoll DGC, or particularly by immunodepletion of PMNs.


Production of human translation-competent lysates using dual centrifugation.

  • Lukas-Adrian Gurzeler‎ et al.
  • RNA biology‎
  • 2022‎

Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates.


Rate zonal centrifugation can partially separate platelets from platelet-derived vesicles.

  • Linda G Rikkert‎ et al.
  • Research and practice in thrombosis and haemostasis‎
  • 2020‎

Centrifugation is commonly used as a first step to enrich biomarkers from blood. Biomarkers are separated on the basis of density and/or diameter. However, the centrifugation protocol affects the yield and purity of biomarkers, for example, isolation of platelets results in co-isolation with extracellular vesicles (EVs).


Comparative analysis of discrete exosome fractions obtained by differential centrifugation.

  • Dennis K Jeppesen‎ et al.
  • Journal of extracellular vesicles‎
  • 2014‎

Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited.


Centrifugation affects the purity of liquid biopsy-based tumor biomarkers.

  • Linda G Rikkert‎ et al.
  • Cytometry. Part A : the journal of the International Society for Analytical Cytology‎
  • 2018‎

Biomarkers in the blood of cancer patients include circulating tumor cells (CTCs), tumor-educated platelets (TEPs), tumor-derived extracellular vesicles (tdEVs), EV-associated miRNA (EV-miRNA), and circulating cell-free DNA (ccfDNA). Because the size and density of biomarkers differ, blood is centrifuged to isolate or concentrate the biomarker of interest. Here, we applied a model to estimate the effect of centrifugation on the purity of a biomarker according to published protocols. The model is based on the Stokes equation and was validated using polystyrene beads in buffer and plasma. Next, the model was applied to predict the biomarker behavior during centrifugation. The result was expressed as the recovery of CTCs, TEPs, tdEVs in three size ranges (1-8, 0.2-1, and 0.05-0.2 μm), EV-miRNA, and ccfDNA. Bead recovery was predicted with errors <18%. Most notable cofounders are the 22% contamination of 1-8 μm tdEVs for TEPs and the 8-82% contamination of <1 μm tdEVs for ccfDNA. A Stokes model can predict biomarker behavior in blood. None of the evaluated protocols produces a pure biomarker. Thus, care should be taken in the interpretation of obtained results, as, for example, results from TEPs may originate from co-isolated large tdEVs and ccfDNA may originate from DNA enclosed in <1 μm tdEVs. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Tailoring the Lamellarity of Liposomes Prepared by Dual Centrifugation.

  • Jonas K Koehler‎ et al.
  • Pharmaceutics‎
  • 2023‎

Dual centrifugation (DC) is a new and versatile technique for the preparation of liposomes by in-vial homogenization of lipid-water mixtures. Size, size distribution, and entrapping efficiencies are strongly dependent on the lipid concentration during DC-homogenization. In this study, we investigated the detailed structure of DC-made liposomes. To do so, an assay to determine the ratio of inner to total membrane surfaces of liposomes (inaccessible surface) was developed based on either time-resolved or steady-state fluorescence spectroscopy. In addition, cryogenic electron microscopy (cryo-EM) was used to confirm the lamellarity results and learn more about liposome morphology. One striking result leads to the possibility of producing a novel type of liposome-small multilamellar vesicles (SMVs) with low PDI, sizes of the order of 100 nm, and almost completely filled with bilayers. A second particularly important finding is that VPGs can be prepared to contain open bilayer structures that will close spontaneously when, after storage, more aqueous phase is added and liposomes are formed. Through this process, a drug can effectively be entrapped immediately before application. In addition, dual centrifugation at lower lipid concentrations is found to produce predominantly unilamellar vesicles.


Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function.

  • Mi Jin Kim‎ et al.
  • Scientific reports‎
  • 2018‎

Mitochondria are essential organelles involved in the maintenance of cell growth and function, and have been investigated as therapeutic targets in various diseases. Recent studies have demonstrated that direct mitochondrial transfer can restore cellular functions of cells with inherited or acquired mitochondrial dysfunction. However, previous mitochondrial transfer methods are inefficient and time-consuming. Here, we developed a simple and easy mitochondrial transfer protocol using centrifugation, which can be applied to any cell type. By our simple centrifugation method, we found that the isolated mitochondria could be successfully transferred into target cells, including mitochondrial DNA-deleted Rho0 cells and dexamethasone-treated atrophic muscle cells. We found that mitochondrial transfer normalised ATP production, mitochondrial membrane potential, mitochondrial reactive oxygen species level, and the oxygen consumption rate of the target cells. Furthermore, delivery of intact mitochondria blocked the AMPK/FoxO3/Atrogene pathway underlying muscle atrophy in atrophic muscle cells. Taken together, this simple and rapid mitochondrial transfer method can be used to treat mitochondrial dysfunction-related diseases.


Changes in rat spermatozoa function after cooling, cryopreservation and centrifugation processes.

  • Suhee Kim‎ et al.
  • Cryobiology‎
  • 2012‎

Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing-thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P<0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (P<0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen-thawed spermatozoa. Centrifugation decreased motility and PMI of frozen-thawed spermatozoa (P<0.05). Centrifugation decreased basal ROS of all spermatozoa (P<0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (P<0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.


Magnetization of active inclusion bodies: comparison with centrifugation in repetitive biotransformations.

  • Romana Koszagova‎ et al.
  • Microbial cell factories‎
  • 2018‎

Physiological aggregation of a recombinant enzyme into enzymatically active inclusion bodies could be an excellent strategy to obtain immobilized enzymes for industrial biotransformation processes. However, it is not convenient to recycle "gelatinous masses" of protein inclusion bodies from one reaction cycle to another, as high centrifugation forces are needed in large volumes. The magnetization of inclusion bodies is a smart solution for large-scale applications, enabling an easier separation process using a magnetic field.


Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation.

  • Kavita Chandra‎ et al.
  • ACS omega‎
  • 2017‎

This article describes the stabilization and postsynthetic separation of gold nanostars (AuNS) synthesized with a morpholine-based Good's buffer, 3-(N-morpholino)propanesulfonic acid. Resuspension of AuNS in ultrapure water improved the shape stability of the particles over 30 days. We demonstrated the sorting of nanostars via rate-zonal centrifugation through a linear sucrose gradient based on branch length and number. We determined that one round of centrifugation was sufficient for separation. Also, we improved the structural homogeneity and stability of the nanoparticles through the optimization of the storage conditions and established a robust method to sort AuNS based on size and shape.


Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation.

  • Mengge Feng‎ et al.
  • International journal of oral science‎
  • 2020‎

Platelet-rich fibrin (PRF) has been widely used owing to its ability to stimulate tissue regeneration. To date, few studies have described the antibacterial properties of PRF. Previously, PRF prepared by horizontal centrifugation (H-PRF) was shown to contain more immune cells than leukocyte- and platelet-rich fibrin (L-PRF). This study aimed to compare the antimicrobial effects of PRFs against Staphylococcus aureus and Escherichia coli in vitro and to determine whether the antibacterial effects correlated with the number of immune cells. Blood samples were obtained from eight healthy donors to prepare L-PRF and H-PRF. The sizes and weights of L-PRF and H-PRF were first evaluated, and their antibacterial effects against S. aureus and E. coli were then tested in vitro using the inhibition ring and plate-counting test methods. Flow-cytometric analysis of the cell components of L-PRF and H-PRF was also performed. No significant differences in size or weight were observed between the L-PRF and H-PRF groups. The H-PRF group contained more leukocytes than the L-PRF group. While both PRFs had notable antimicrobial activity against S. aureus and E. coli, H-PRF demonstrated a significantly better antibacterial effect than L-PRF. Furthermore, the antimicrobial ability of the PRF solid was less efficient than that of wet PRF. In conclusion, H-PRF exhibited better antibacterial activity than L-PRF, which might have been attributed to having more immune cells.


Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol.

  • Mikhail A Livshits‎ et al.
  • Scientific reports‎
  • 2015‎

Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for "fixed-angle" rotors. For both types of rotors--"swinging bucket" and "fixed-angle"--we express the theoretically expected proportion of pelleted vesicles of a given size and the "cut-off" size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the "cut-off" sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this "cut-off"-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.


Effects of single layer centrifugation with Androcoll-P on boar sperm.

  • D Bucci‎ et al.
  • Animal reproduction science‎
  • 2013‎

Single layer centrifugation (SLC) is a useful technique to select porcine spermatozoa for further artificial insemination practices. The aim of this study was to determine possible side-effects related to capacitation due to the process. Semen viability, acrosome integrity and capacitation status were determined through fluorescent probes (SYBR14-PI, FITC-PSA, CTC staining) and Hsp70 immunolocalization and protein tyrosine phosphorylation (by western blotting and immunolocalization) in different groups: control, after SLC with Androcoll (AND), after SLC and washing (AND-Wash) and after SLC, washing and storage for 2h at 17°C with 2.5% of seminal plasma (AND-Wash-SP). Neither viability nor acrosome integrity were impaired by the different treatments; as far as CTC staining, we observed a significant increase (p<0.05) in the capacitation related pattern in AND and AND-Wash, while after exposure for 2h to seminal plasma (AND-Wash-SP group), the increase became less evident; the same trend was observed in Hsp70 immunolocalization for the EL pattern. Neither immunolocalization nor western blotting for tyrosine phosphorylated proteins had an increase in capacitated pattern or in phosphorylation status, except for a 25kDa band that increased in AND and AND-Wash groups and decreased in AND-Wash-SP group. SLC using Androcoll-P induces some capacitation-related changes in boar sperm membrane, as demonstrated by CTC staining and Hsp70 immunolocalization. For protein tyrosine phosphorylation, only a 25kDa protein showed some changes that should be investigated further.


Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography.

  • Anh K Lam‎ et al.
  • Advances in cell and gene therapy‎
  • 2023‎

Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.


Isolation of DNA-free RNA, DNA, and proteins by cesium trifluoroacetate centrifugation.

  • Hong Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

The ability to simultaneously isolate intact DNA-free RNA, genomic DNA, and proteins from a biological specimen can be useful in cloning genes and analyzing gene expression. Equilibrium density gradient centrifugation with CsCl is a useful tool for fractionating, quantitatively separating, and characterizing RNA, DNA, and the total quota of proteins, respectively, based on differences in their buoyant densities. In the present study we have reexamined the rarely used cesium salt, cesium trifluoroacetate, for the same purpose. A significant advantage of CsTFA lies in the fact that, unlike in CsCl, RNA can be recovered from a single, soluble fraction of the CsTFA gradient. Furthermore, unlike CsCl, CsTFA is freely soluble in ethanol so that co-precipitation of the salt in the recovered RNA upon alcohol precipitation does not take place. Hence, the RNA is recovered with minimum manipulations. The one-step separation of cellular macromolecule classes free of each other in small amount of starting materials provides a major advantage over other methods currently in use.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: