Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41,451 papers

Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

  • Kristen Bowey-Dellinger‎ et al.
  • Journal of microbiology & biology education‎
  • 2017‎

Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.


The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids.

  • Min Ju Kang‎ et al.
  • American journal of physiology. Cell physiology‎
  • 2024‎

This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.


Comparison of three-dimensional cell culture techniques of dedifferentiated liposarcoma and their integration with future research.

  • Sayumi Tahara‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2024‎

Background: Dedifferentiated liposarcoma is a formidable sarcoma subtype due to its high local recurrence rate and resistance to medical treatment. While 2D cell cultures are still commonly used, 3D cell culture systems have emerged as a promising alternative, particularly scaffold-based techniques that enable the creation of 3D models with more accurate cell-stroma interactions. Objective: To investigate how 3D structures with or without the scaffold existence would affect liposarcoma cell lines growth morphologically and biologically. Methods: Lipo246 and Lipo863 cell lines were cultured in 3D using four different methods; Matrigel® ECM scaffold method, Collagen ECM scaffold method, ULA plate method and Hanging drop method, in addition to conventional 2D cell culture methods. All samples were processed for histopathological analysis (HE, IHC and DNAscope™), Western blot, and qPCR; moreover, 3D collagen-based models were treated with different doses of SAR405838, a well-known inhibitor of MDM2, and cell viability was assessed in comparison to 2D model drug response. Results: Regarding morphology, cell lines behaved differently comparing the scaffold-based and scaffold-free methods. Lipo863 formed spheroids in Matrigel® but not in collagen, while Lipo246 did not form spheroids in either collagen or Matrigel®. On the other hand, both cell lines formed spheroids using scaffold-free methods. All samples retained liposarcoma characteristic, such as high level of MDM2 protein expression and MDM2 DNA amplification after being cultivated in 3D. 3D collagen samples showed higher cell viability after SAR40538 treatment than 2D models, while cells sensitive to the drug died by apoptosis or necrosis. Conclusion: Our results prompt us to extend our investigation by applying our 3D models to further oncological relevant applications, which may help address unresolved questions about dedifferentiated liposarcoma biology.


Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts.

  • L A Smith‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2-3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines.


Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques.

  • Shobha Gangodkar‎ et al.
  • Journal of electron microscopy‎
  • 2010‎

The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes-virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.


Galactosylation of rat natural scaffold for MSC differentiation into hepatocyte-like cells: A comparative analysis of 2D vs. 3D cell culture techniques.

  • Masoud Vazirzadeh‎ et al.
  • Biochemistry and biophysics reports‎
  • 2023‎

The liver plays a crucial role in drug detoxification, and the main source of liver transplants is brain-dead patients. However, the demand for transplants exceeds the available supply, leading to controversies in selecting suitable candidates for acute liver diseases. This research aimed to differentiate mesenchymal stem cells (MSCs) into hepatocyte-like cells using galactosylated rat natural scaffolds and comparing 2-D and 3-D cell culture methods. The study involved isolating and culturing Wharton's jelly cells from the umbilical cord, examining surface markers and adipogenic differentiation potential of MSCs, and culturing mesenchymal cells on galactosylated scaffolds. The growth and proliferation of stem cells on the scaffolds were evaluated using the MTT test, and urea synthesis was measured in different culture environments. Changes in gene expression were analyzed using real-time PCR. Flow cytometry results confirmed the presence of specific surface antigens on MSCs, indicating their identity, while the absence of a specific antigen indicated their differentiation into adipocytes. The MTT test revealed higher cell attachment to galactosylated scaffolds compared to the control groups. Urea secretion was observed in differentiated cells, with the highest levels in cells cultured on galactosylated scaffolds. Gene expression analysis showed differential expression patterns for OCT-4, HNF1, ALB, AFP, and CYP genes under different conditions. The findings indicated that hepatocyte-like cells derived from 3D cultures on galactosylated scaffolds exhibited superior characteristics compared to cells in other culture conditions. These cells demonstrated enhanced proliferation, stability, and urea secretion ability. The study also supported the differentiation potential of MSCs derived from Wharton's jelly umbilical cord into liver-like cells.


PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions.

  • Benita Wiatrak‎ et al.
  • Cells‎
  • 2020‎

The PC12 cell line is one of the most commonly used in neuroscience research, including studies on neurotoxicity, neuroprotection, neurosecretion, neuroinflammation, and synaptogenesis. Two types of this line are available in the ATCC collection: traditional PC12 cells grown in suspension and well-attached adherent phenotype. PC12 cells grown in suspension tend to aggregate and adhere poorly to non-coated surfaces. Therefore, it is necessary to modify the surface of culture vessels. This paper aims to characterise the use of two distinct variants of PC12 cells as well as describe their differentiation and neuronal outgrowth with diverse NGF concentrations (rat or human origin) on various surfaces. In our study, we evaluated cell morphology, neurite length, density and outgrowth (measured spectrofluorimetrically), and expression of neuronal biomarkers (doublecortin and NeuN). We found that the collagen coating was the most versatile method of surface modification for both cell lines. For adherent cells, the coating was definitely less important, and the poly-d-lysine surface was as good as collagen. We also demonstrated that the concentration of NGF is of great importance for the degree of differentiation of cells. For suspension cells, we achieved the best neuronal characteristics (length and density of neurites) after 14 days of incubation with 100 ng/mL NGF (change every 48 h), while for adherent cells after 3-5 days, after which they began to proliferate. In the PC12 cell line, doublecortin (DCX) expression in the cytoplasm and NeuN in the cell nucleus were found. In turn, in the PC12 Adh line, DCX was not expressed, and NeuN expression was located in the entire cell (both in the nucleus and cytoplasm). Only the traditional PC12 line grown in suspension after differentiation with NGF should be used for neurobiological studies, especially until the role of the NeuN protein, whose expression has also been noted in the cytoplasm of adherent cells, is well understood.


Isolation, culture, and cryosectioning of primary porcine retinal pigment epithelium on transwell cell culture inserts.

  • Erika M S Hood‎ et al.
  • STAR protocols‎
  • 2022‎

Primary culture and long-term maintenance of primary retinal pigment epithelium (RPE) is a useful model system for the study of ocular pathologies such as age-related macular degeneration. Here, we detail the steps for the isolation and long-term culture of primary porcine RPE. We also describe steps for cryoprotecting, cryosectioning, and interrogating with immunofluorescence and histochemistry RPE cells grown on transwell membranes. These techniques can be used in histological studies to detect sub-RPE deposits. For complete details on the use and execution of this protocol, please refer to Pilgrim et al., (2017).


Scalable nanolaminated SERS multiwell cell culture assay.

  • Xiang Ren‎ et al.
  • Microsystems & nanoengineering‎
  • 2020‎

This paper presents a new cell culture platform enabling label-free surface-enhanced Raman spectroscopy (SERS) analysis of biological samples. The platform integrates a multilayered metal-insulator-metal nanolaminated SERS substrate and polydimethylsiloxane (PDMS) multiwells for the simultaneous analysis of cultured cells. Multiple cell lines, including breast normal and cancer cells and prostate cancer cells, were used to validate the applicability of this unique platform. The cell lines were cultured in different wells. The Raman spectra of over 100 cells from each cell line were collected and analyzed after 12 h of introducing the cells to the assay. The unique Raman spectra of each cell line yielded biomarkers for identifying cancerous and normal cells. A kernel-based machine learning algorithm was used to extract the high-dimensional variables from the Raman spectra. Specifically, the nonnegative garrote on a kernel machine classifier is a hybrid approach with a mixed nonparametric model that considers the nonlinear relationships between the higher-dimension variables. The breast cancer cell lines and normal breast epithelial cells were distinguished with an accuracy close to 90%. The prediction rate between breast cancer cells and prostate cancer cells reached 94%. Four blind test groups were used to evaluate the prediction power of the SERS spectra. The peak intensities at the selected Raman shifts of the testing groups were selected and compared with the training groups used in the machine learning algorithm. The blind testing groups were correctly predicted 100% of the time, demonstrating the applicability of the multiwell SERS array for analyzing cell populations for cancer research.


Fabrication of tissue-engineered cell sheets by automated cell culture equipment.

  • Ayako Nishimura‎ et al.
  • Journal of tissue engineering and regenerative medicine‎
  • 2019‎

Most cells for regenerative medicine are currently cultured manually. In order to promote the widespread use of regenerative medicine, it will be necessary to develop automated culture techniques so that cells can be produced in greater quantities at lower cost and with more stable quality. In the field of regenerative medicine technology, cell sheet therapy is an effective tissue engineering technique whereby cells can be grafted by attaching them to a target site. We have developed automated cell culture equipment to promote the use of this cell sheet regenerative treatment. This equipment features a fully closed culture vessel and circuit system that avoids contamination with bacteria and the like from the external environment, and it was designed to allow 10 cell sheets to be simultaneously cultured in parallel. We used this equipment to fabricate 50 sheets of human oral mucosal epithelial cells in five automated culture tests in this trial. By analyzing these sheets, we confirmed that 49 of the 50 sheets satisfied the quality standards of clinical research. To compare the characteristics of automatically fabricated cell sheets with those of manually fabricated cell sheets, we performed histological analyses using immunostaining and transmission electron microscopy. The results confirmed that cell sheets fabricated with the automated cell culture are differentiated in the same way as cultures fabricated manually.


Vascular Cell Co-Culture on Silk Fibroin Matrix.

  • Fangfang Tu‎ et al.
  • Polymers‎
  • 2018‎

Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture. Immunofluorescence and scanning electron microscopy (SEM) analysis showed that HUVECs and HAFs co-existed well with HAVSMCs on SF films or SFTSs. Cytokine expression determined by reverse transcription-polymerase chain reaction (RT-PCR) indicated that the expression levels of α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) in HAVSMCs were inhibited on SF films or SFTSs, but expression could be obviously promoted by co-culture with HUVECs or HAFs, especially that of SM-MHC. On SF films, the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (CD31) in HUVECs was promoted, and the expression levels of both increased obviously when co-cultured with HAVSMCs, with the expression levels of VEGF increasing with increasing incubation time. The expression levels of VEGF and CD31 in cells co-cultured on SFTSs improved significantly from day 3 compared with the mono-culture group. These results were beneficial to the mechanism analysis on vascular cell colonization and vascular tissue repair after in vivo transplantation of SFTSs.


A Microcavity Array-Based 4D Cell Culture Platform.

  • Cordula Nies‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2019‎

(1) Background: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. (2) Methods: The system was set up with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34+ cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days. We used a software-based cell detection method to count single hematopoietic stem cells (HSCs) in microcavities. (3) Results: It was possible to detect single HSCs and their migration behavior within single microcavities. The HSCs displayed a pronounced migration behavior with one population of CD34-expressing cells located at the bottom of the microcavities and one population located in the middle of the microcavities at day 14. However, at day 21 the two populations seemed to unite again so that no clear distinction between the two was possible anymore. (4) Conclusions: Single cell migration detection was possible but microscopy and flow cytometry delivered non-uniform data sets. Further optimization is currently being developed.


Stiffness-Controlled Hydrogels for 3D Cell Culture Models.

  • Arto Merivaara‎ et al.
  • Polymers‎
  • 2022‎

Nanofibrillated cellulose (NFC) hydrogel is a versatile biomaterial suitable, for example, for three-dimensional (3D) cell spheroid culturing, drug delivery, and wound treatment. By freeze-drying NFC hydrogel, highly porous NFC structures can be manufactured. We freeze-dried NFC hydrogel and subsequently reconstituted the samples into a variety of concentrations of NFC fibers, which resulted in different stiffness of the material, i.e., different mechanical cues. After the successful freeze-drying and reconstitution, we showed that freeze-dried NFC hydrogel can be used for one-step 3D cell spheroid culturing of primary mesenchymal stem/stromal cells, prostate cancer cells (PC3), and hepatocellular carcinoma cells (HepG2). No difference was observed in the viability or morphology between the 3D cell spheroids cultured in the freeze-dried and reconstituted NFC hydrogel and fresh NFC hydrogel. Furthermore, the 3D cultured spheroids showed stable metabolic activity and nearly 100% viability. Finally, we applied a convolutional neural network (CNN)-based automatic nuclei segmentation approach to automatically segment individual cells of 3D cultured PC3 and HepG2 spheroids. These results provide an application to culture 3D cell spheroids more readily with the NFC hydrogel and a step towards automatization of 3D cell culturing and analysis.


Hyperosmolality in CHO cell culture: effects on the proteome.

  • Nadiya Romanova‎ et al.
  • Applied microbiology and biotechnology‎
  • 2022‎

Chinese hamster ovary (CHO) cells are the most commonly used host cell lines for therapeutic protein production. Exposure of these cells to highly concentrated feed solution during fed-batch cultivation can lead to a non-physiological increase in osmolality (> 300 mOsm/kg) that affects cell physiology, morphology, and proteome. As addressed in previous studies (and indeed, as recently addressed in our research), hyperosmolalities of up to 545 mOsm/kg force cells to abort proliferation and gradually increase their volume-almost tripling it. At the same time, CHO cells also show a significant hyperosmolality-dependent increase in mitochondrial activity. To gain deeper insight into the molecular mechanisms that are involved in these processes, as detailed in this paper, we performed a comparative quantitative label-free proteome study of hyperosmolality-exposed CHO cells compared with control cells. Our analysis revealed differentially expressed key proteins that mediate mitochondrial activation, oxidative stress amelioration, and cell cycle progression. Our studies also demonstrate a previously unknown effect: the strong regulation of proteins can alter both cell membrane stiffness and permeability. For example, we observed that three types of septins (filamentous proteins that form diffusion barriers in the cell) became strongly up-regulated in response to hyperosmolality in the experimental setup. Overall, these new observations correlate well with recent CHO-based fluxome and transcriptome studies, and reveal additional unknown proteins involved in the response to hyperosmotic pressure by over-concentrated feed in mammalian cells.Key points• First-time comparative proteome analysis of CHO cells exposed to over-concentrated feed.• Discovery of membrane barrier-forming proteins up-regulation under hyperosmolality.• Description of mitochondrial and protein chaperones activation in treated cells.


4D Self-Morphing Culture Substrate for Modulating Cell Differentiation.

  • Shida Miao‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

As the most versatile and promising cell source, stem cells have been studied in regenerative medicine for two decades. Currently available culturing techniques utilize a 2D or 3D microenvironment for supporting the growth and proliferation of stem cells. However, these culture systems fail to fully reflect the supportive biological environment in which stem cells reside in vivo, which contain dynamic biophysical growth cues. Herein, a 4D programmable culture substrate with a self-morphing capability is presented as a means to enhance dynamic cell growth and induce differentiation of stem cells. To function as a model system, a 4D neural culture substrate is fabricated using a combination of printing and imprinting techniques keyed to the different biological features of neural stem cells (NSCs) at different differentiation stages. Results show the 4D culture substrate demonstrates a time-dependent self-morphing process that plays an essential role in regulating NSC behaviors in a spatiotemporal manner and enhances neural differentiation of NSCs along with significant axonal alignment. This study of a customized, dynamic substrate revolutionizes current stem cell therapies, and can further have a far-reaching impact on improving tissue regeneration and mimicking specific disease progression, as well as other impacts on materials and life science research.


Navigating challenges: optimising methods for primary cell culture isolation.

  • Oliwia Piwocka‎ et al.
  • Cancer cell international‎
  • 2024‎

Primary cell lines are invaluable for exploring cancer biology and investigating novel treatments. Despite their numerous advantages, primary cultures are laborious to obtain and maintain in culture. Hence, established cell lines are still more common. This study aimed to evaluate a range of techniques for isolating primary breast cancer cultures, employing distinct enzymatic compositions, incubation durations, and mechanical approaches, including filtration. Out of several protocols, we opted for a highly effective method (Method 5) that gave rise to a primary cell culture (BC160). This method combines mechanical disaggregation and enzymatic digestion with hyaluronidase and collagenase. Moreover, the paper addresses common issues in isolating primary cultures, shedding light on the struggle against fibroblasts overgrowing cancer cell populations. To make primary cell lines a preferred model, it is essential to elaborate and categorise isolation methods, develop approaches to separate heterogeneous cultures and investigate factors influencing the establishment of primary cell lines.


Apple derived cellulose scaffolds for 3D mammalian cell culture.

  • Daniel J Modulevsky‎ et al.
  • PloS one‎
  • 2014‎

There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.


Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.

  • Cynthia A Batchelder‎ et al.
  • PloS one‎
  • 2015‎

Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.


3D Cell Culture in a Self-Assembled Nanofiber Environment.

  • Yi Wen Chai‎ et al.
  • PloS one‎
  • 2016‎

The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.


Animal-cell culture media: History, characteristics, and current issues.

  • Tatsuma Yao‎ et al.
  • Reproductive medicine and biology‎
  • 2017‎

Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: