Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 5,000 papers

Sustainable catalysis.

  • Nicholas J Turner‎
  • Beilstein journal of organic chemistry‎
  • 2016‎

No abstract available


Publication catalysis-lowering activation energy.

  • Bernd Pulverer‎
  • The EMBO journal‎
  • 2018‎

Life Science Alliance, a new peer reviewed open access platform for and by the research community to increase the efficacy of publishing high quality research findings.


Mapping enzyme catalysis with metabolic biosensing.

  • Linfeng Xu‎ et al.
  • Nature communications‎
  • 2021‎

Enzymes are represented across a vast space of protein sequences and structural forms and have activities that far exceed the best chemical catalysts; however, engineering them to have novel or enhanced activity is limited by technologies for sensing product formation. Here, we describe a general and scalable approach for characterizing enzyme activity that uses the metabolism of the host cell as a biosensor by which to infer product formation. Since different products consume different molecules in their synthesis, they perturb host metabolism in unique ways that can be measured by mass spectrometry. This provides a general way by which to sense product formation, to discover unexpected products and map the effects of mutagenesis.


Invariant Molecular Representations for Heterogeneous Catalysis.

  • Jawad Chowdhury‎ et al.
  • Journal of chemical information and modeling‎
  • 2024‎

Catalyst screening is a critical step in the discovery and development of heterogeneous catalysts, which are vital for a wide range of chemical processes. In recent years, computational catalyst screening, primarily through density functional theory (DFT), has gained significant attention as a method for identifying promising catalysts. However, the computation of adsorption energies for all likely chemical intermediates present in complex surface chemistries is computationally intensive and costly due to the expensive nature of these calculations and the intrinsic idiosyncrasies of the methods or data sets used. This study introduces a novel machine learning (ML) method to learn adsorption energies from multiple DFT functionals by using invariant molecular representations (IMRs). To do this, we first extract molecular fingerprints for the reaction intermediates and later use a Siamese-neural-network-based training strategy to learn invariant molecular representations or the IMR across all available functionals. Our Siamese network-based representations demonstrate superior performance in predicting adsorption energies compared with other molecular representations. Notably, when considering mean absolute values of adsorption energies as 0.43 eV (PBE-D3), 0.46 eV (BEEF-vdW), 0.81 eV (RPBE), and 0.37 eV (scan+rVV10), our IMR method has achieved the lowest mean absolute errors (MAEs) of 0.18 0.10, 0.16, and 0.18 eV, respectively. These results emphasize the superior predictive capacity of our Siamese network-based representations. The empirical findings in this study illuminate the efficacy, robustness, and dependability of our proposed ML paradigm in predicting adsorption energies, specifically for propane dehydrogenation on a platinum catalyst surface.


The extended catalysis of glutathione transferase.

  • Raffaele Fabrini‎ et al.
  • FEBS letters‎
  • 2011‎

Glutathione transferase reaches 0.5-0.8 mM concentration in the cell so it works in vivo under the unusual conditions of, [S]≪[E]. As glutathione transferase lowers the pK(a) of glutathione (GSH) bound to the active site, it increases the cytosolic concentration of deprotonated GSH about five times and speeds its conjugation with toxic compounds that are non-typical substrates of this enzyme. This acceleration becomes more efficient in case of GSH depletion and/or cell acidification. Interestingly, the enzymatic conjugation of GSH to these toxic compounds does not require the assumption of a substrate-enzyme complex; it can be explained by a simple bimolecular collision between enzyme and substrate. Even with typical substrates, the astonishing concentration of glutathione transferase present in hepatocytes, causes an unusual "inverted" kinetics whereby the classical trends of v versus E and v versus S are reversed.


Prebiotic RNA synthesis by montmorillonite catalysis.

  • Sohan Jheeta‎ et al.
  • Life (Basel, Switzerland)‎
  • 2014‎

This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.


Yeast alcohol dehydrogenase structure and catalysis.

  • Savarimuthu Baskar Raj‎ et al.
  • Biochemistry‎
  • 2014‎

Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of "back-to-back" dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure.


Structural insights into thebaine synthase 2 catalysis.

  • Chun-Chi Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Thebaine synthase 2 (THS2) that can transform (7S)-salutaridinol 7-O-acetate to thebaine catalyzes the final step of thebaine biosynthesis in Papaver somniferum. Here, the crystal structures of THS2 and its complex with thebaine are reported, revealing the interaction network in the substrate-binding pocket. Subsequent docking and QM/MM studies was performed to further explore the catalytic mechanism of THS2. Our results suggest that T105 may abstract the proton of C4-OH from the substrate under the assistance of H89. The resulting C4-O- phenolate anion then attacks the nearby C5, and triggers intramolecular SN2' syn displacement with the elimination of O-acetyl group. Moreover, the latter SN2' reaction is the rate-determining step of the whole enzymatic reaction with an overall energy barrier of 18.8 kcal/mol. These findings are of pivotal importance to understand the mechanism of action of thebaine biosynthesis, and would guide enzyme engineering to enhance the production of opiate alkaloids via metabolic engineering.


Neutron Insights into Sorption Enhanced Methanol Catalysis.

  • Marin Nikolic‎ et al.
  • Topics in catalysis‎
  • 2021‎

Sorption enhanced methanol production makes use of the equilibrium shift of the CO 2 hydrogenation reaction towards the desired products. However, the increased complexity of the catalyst system leads to additional reactions and thus side products such as dimethyl ether, and complicates the analysis of the reaction mechanism. On the other hand, the unusually high concentration of intermediates and products in the sorbent facilitates the use of inelastic neutron scattering (INS) spectroscopy. Despite being a post-mortem method, the INS data revealed the change of the reaction path during sorption catalysis. Concretely, the experiments indicate that the varying water partial pressure due to the adsorption saturation of the zeolite sorbent influences the progress of the reaction steps in which water is involved. Experiments with model catalysts support the INS findings.


Structure, catalysis, and inhibition mechanism of prenyltransferase.

  • Hsin-Yang Chang‎ et al.
  • IUBMB life‎
  • 2021‎

Isoprenoids, also known as terpenes or terpenoids, represent a large family of natural products composed of five-carbon isopentenyl diphosphate or its isomer dimethylallyl diphosphate as the building blocks. Isoprenoids are structurally and functionally diverse and include dolichols, steroid hormones, carotenoids, retinoids, aromatic metabolites, the isoprenoid side-chain of ubiquinone, and isoprenoid attached signaling proteins. Productions of isoprenoids are catalyzed by a group of enzymes known as prenyltransferases, such as farnesyltransferases, geranylgeranyltransferases, terpenoid cyclase, squalene synthase, aromatic prenyltransferase, and cis- and trans-prenyltransferases. Because these enzymes are key in cellular processes and metabolic pathways, they are expected to be potential targets in new drug discovery. In this review, six distinct subsets of characterized prenyltransferases are structurally and mechanistically classified, including (1) head-to-tail prenyl synthase, (2) head-to-head prenyl synthase, (3) head-to-middle prenyl synthase, (4) terpenoid cyclase, (5) aromatic prenyltransferase, and (6) protein prenylation. Inhibitors of those enzymes for potential therapies against several diseases are discussed. Lastly, recent results on the structures of integral membrane enzyme, undecaprenyl pyrophosphate phosphatase, are also discussed.


Filament formation by glutaminase enzymes drives catalysis.

  • Shi Feng‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The mitochondrial glutaminase enzymes initiate glutaminolysis by catalyzing the hydrolysis of glutamine to glutamate, satisfying the metabolic requirements of aggressive cancers and thus representing potential therapeutic targets. However, the mechanisms underlying their allosteric regulation are poorly understood. It has been suggested that glutaminases form oligomeric filament-like structures essential for their activation. Here, we provide structural evidence for the ability of the glutaminase enzymes to form filaments upon substrate binding, and present the first cryo-EM structures of the human full-length glutaminase isozyme GLS2 that offer an unprecedented view of the mechanism responsible for catalyzing glutamine hydrolysis. The GLS2 structures reveal that the 'activation loop', a motif previously identified to regulate enzymatic activity, assumes a unique conformation and works together with a 'lid' that closes over the active site to 'lock in' the substrate glutamine. Tyrosine 251 of the GLS2 activation loop forms a cation-π interaction with Lysine 222 in the active site, which in turn enables a key catalytic residue, Serine 219, to undergo deprotonation for nucleophilic attack on the substrate. These findings further suggest that allosteric glutaminase inhibitors disrupt this interaction, which is critical for catalysis, while activators stabilize it. The GLS2 structures also show how the ankyrin repeats regulate different glutaminase isozymes.


The energy landscape of adenylate kinase during catalysis.

  • S Jordan Kerns‎ et al.
  • Nature structural & molecular biology‎
  • 2015‎

Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.


Supersulfide catalysis for nitric oxide and aldehyde metabolism.

  • Shingo Kasamatsu‎ et al.
  • Science advances‎
  • 2023‎

Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.


Exploitation of binding energy for catalysis and design.

  • Summer B Thyme‎ et al.
  • Nature‎
  • 2009‎

Enzymes use substrate-binding energy both to promote ground-state association and to stabilize the reaction transition state selectively. The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in the centre of a 20-base-pair (bp) DNA target site, with the amino (N)-terminal domain of the enzyme making extensive binding interactions with the left (-) side of the target site and the similarly structured carboxy (C)-terminal domain interacting with the right (+) side. Here we show that, despite the approximate twofold symmetry of the enzyme-DNA complex, there is almost complete segregation of interactions responsible for substrate binding to the (-) side of the interface and interactions responsible for transition-state stabilization to the (+) side. Although single base-pair substitutions throughout the entire DNA target site reduce catalytic efficiency, mutations in the (-) DNA half-site almost exclusively increase the dissociation constant (K(D)) and the Michaelis constant under single-turnover conditions (K(M)*), and those in the (+) half-site primarily decrease the turnover number (k(cat)*). The reduction of activity produced by mutations on the (-) side, but not mutations on the (+) side, can be suppressed by tethering the substrate to the endonuclease displayed on the surface of yeast. This dramatic asymmetry in the use of enzyme-substrate binding energy for catalysis has direct relevance to the redesign of endonucleases to cleave genomic target sites for gene therapy and other applications. Computationally redesigned enzymes that achieve new specificities on the (-) side do so by modulating K(M)*, whereas redesigns with altered specificities on the (+) side modulate k(cat)*. Our results illustrate how classical enzymology and modern protein design can each inform the other.


The influence of catalysis on mad2 activation dynamics.

  • Marco Simonetta‎ et al.
  • PLoS biology‎
  • 2009‎

Mad2 is a key component of the spindle assembly checkpoint, a safety device ensuring faithful sister chromatid separation in mitosis. The target of Mad2 is Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mad2 binding to Cdc20 is a complex reaction that entails the conformational conversion of Mad2 from an open (O-Mad2) to a closed (C-Mad2) conformer. Previously, it has been hypothesized that the conversion of O-Mad2 is accelerated by its conformational dimerization with C-Mad2. This hypothesis, known as the Mad2-template hypothesis, is based on the unproven assumption that the natural conversion of O-Mad2 required to bind Cdc20 is slow. Here, we provide evidence for this fundamental assumption and demonstrate that conformational dimerization of Mad2 accelerates the rate of Mad2 binding to Cdc20. On the basis of our measurements, we developed a set of rate equations that deliver excellent predictions of experimental binding curves under a variety of different conditions. Our results strongly suggest that the interaction of Mad2 with Cdc20 is rate limiting for activation of the spindle checkpoint. Conformational dimerization of Mad2 is essential to accelerate Cdc20 binding, but it does not modify the equilibrium of the Mad2:Cdc20 interaction, i.e., it is purely catalytic. These results surpass previously formulated objections to the Mad2-template model and predict that the release of Mad2 from Cdc20 is an energy-driven process.


Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis.

  • Bryce V Plapp‎ et al.
  • Biochemistry‎
  • 2017‎

During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme-NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ∼1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.


Balancing Bulkiness in Gold(I) Phosphino-triazole Catalysis.

  • Yiming Zhao‎ et al.
  • European journal of organic chemistry‎
  • 2019‎

The syntheses of a series of 1-phenyl-5-phosphino 1,2,3-triazoles are disclosed, within which, the phosphorus atom (at the 5-position of a triazole) is appended by one, two or three triazole motifs, and the valency of the phosphorus(III) atom is completed by two, one or zero ancillary (phenyl or cyclohexyl) groups respectively. This series of phosphines was compared with tricyclohexylphosphine and triphenylphosphine to study the effect of increasing the number of triazoles appended to the central phosphorus atom from zero to three triazoles. Gold(I) chloride complexes of the synthesised ligands were prepared and analysed by techniques including single-crystal X-ray diffraction structure determination. Gold(I) complexes were also prepared from 1-(2,6-dimethoxy)-phenyl-5-dicyclohexyl-phosphino 1,2,3-triazole and 1-(2,6-dimethoxy)-phenyl-5-diphenyl-phosphino 1,2,3-triazole ligands. The crystal structures thus obtained were examined using the SambVca (2.0) web tool and percentage buried volumes determined. The effectiveness of these gold(I) chloride complexes to serve as precatalysts for alkyne hydration were assessed. Furthermore, the regioselectivity of hydration of but-1-yne-1,4-diyldibenzene was probed.


Dual-Bioorthogonal Catalysis by a Palladium Peptide Complex.

  • Ana M Pérez-López‎ et al.
  • Journal of medicinal chemistry‎
  • 2023‎

Artificial metalloenzymes (ArMs) enrich bioorthogonal chemistry with new-to-nature reactions while limiting metal deactivation and toxicity. This enables biomedical applications such as activating therapeutics in situ. However, while combination therapies are becoming widespread anticancer treatments, dual catalysis by ArMs has not yet been shown. We present a heptapeptidic ArM with a novel peptide ligand carrying a methyl salicylate palladium complex. We observed that the peptide scaffold reduces metal toxicity while protecting the metal from deactivation by cellular components. Importantly, the peptide also improves catalysis, suggesting involvement in the catalytic reaction mechanism. Our work shows how a palladium-peptide homogeneous catalyst can simultaneously mediate two types of chemistry to synthesize anticancer drugs in human cells. Methyl salicylate palladium LLEYLKR peptide (2-Pd) succeeded to simultaneously produce paclitaxel by depropargylation, and linifanib by Suzuki-Miyaura cross-coupling in cell culture, thereby achieving combination therapy on non-small-cell lung cancer (NSCLC) A549 cells.


Structural insights into FSP1 catalysis and ferroptosis inhibition.

  • Yun Lv‎ et al.
  • Nature communications‎
  • 2023‎

Ferroptosis suppressor protein 1 (FSP1, also known as AIMF2, AMID or PRG3) is a recently identified glutathione-independent ferroptosis suppressor1-3, but its underlying structural mechanism remains unknown. Here we report the crystal structures of Gallus gallus FSP1 in its substrate-free and ubiquinone-bound forms. The structures reveal a FAD-binding domain and a NAD(P)H-binding domain, both of which are shared with AIF and NADH oxidoreductases4-9, and a characteristic carboxy-terminal domain as well. We demonstrate that the carboxy-terminal domain is crucial for the catalytic activity and ferroptosis inhibition of FSP1 by mediating the functional dimerization of FSP1, and the formation of two active sites located on two sides of FAD, which are responsible for ubiquinone reduction and a unique FAD hydroxylation respectively. We also identify that FSP1 can catalyze the production of H2O2 and the conversion of FAD to 6-hydroxy-FAD in the presence of oxygen and NAD(P)H in vitro, and 6-hydroxy-FAD directly inhibits ferroptosis in cells. Together, these findings further our understanding on the catalytic and ferroptosis suppression mechanisms of FSP1 and establish 6-hydroxy-FAD as an active cofactor in FSP1 and a potent radical-trapping antioxidant in ferroptosis inhibition.


Glass wool: a novel support for heterogeneous catalysis.

  • Ayda Elhage‎ et al.
  • Chemical science‎
  • 2018‎

Heterogeneous catalysis presents significant advantages over homogeneous catalysis such as ease of separation and reuse of the catalyst. Here we show that a very inexpensive, manageable and widely available material - glass wool - can act as a catalyst support for a number of different reactions. Different metal and metal oxide nanoparticles, based on Pd, Co, Cu, Au and Ru, were deposited on glass wool and used as heterogeneous catalysts for a variety of thermal and photochemical organic reactions including reductive de-halogenation of aryl halides, reduction of nitrobenzene, Csp3-Csp3 couplings, N-C heterocycloadditions (click chemistry) and Csp-Csp2 couplings (Sonogashira couplings). The use of glass wool as a catalyst support for important organic reactions, particularly C-C couplings, opens the opportunity to develop economical heterogeneous catalysts with excellent potential for flow photo-chemistry application.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: