Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 241 papers

Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division.

  • Li Qu‎ et al.
  • Plant physiology‎
  • 2021‎

Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.


The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p.

  • Danièle Stalder‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.


EL1-like Casein Kinases Suppress ABA Signaling and Responses by Phosphorylating and Destabilizing the ABA Receptors PYR/PYLs in Arabidopsis.

  • Hu-Hui Chen‎ et al.
  • Molecular plant‎
  • 2018‎

Unveiling the signal transduction of phytohormone abscisic acid (ABA) and its regulatory mechanisms is critical for developing the strategies toward improving plant responses to stressful environments. ABA signaling is perceived and mediated by multiple PYR/PYL receptors, whose post-translational modifications, especially phosphorylation, remain largely unknown. In this study, we demonstrate that Arabidopsis EL1-like (AEL) protein, a casein kinase that regulates various physiological processes, phosphorylate PYR/PYLs to promote their ubiquitination and degradation, resulting in suppressed ABA responses. Arabidopsis ael triple mutants display hypersensitive responses to ABA treatment, which is consistent with the suppressed degradation of PYR/PYL proteins. PYR/PYLs are phosphorylated in vivo and mutation of the conserved AEL phosphorylation sites results in reduced phosphorylation, ubiquitination, and degradation of PYR/PYLs, and hence enhanced ABA responses. Taken together, these results demonstrate that AEL-mediated phosphorylation plays crucial roles in regulating the stability and function of PYR/PYLs, providing significant insights into the post-translational regulation of PYR/PYL receptors and ABA signaling.


Immunohistochemical and proteomic evaluation of nuclear ubiquitous casein and cyclin-dependent kinases substrate in invasive ductal carcinoma of the breast.

  • Piotr Ziółkowski‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2009‎

Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is 27 kDa chromosomal protein of unknown function. Its amino acid composition as well as structure of its DNA binding domain resembles that of high-mobility group A, HMGA proteins. HMGA proteins are associated with various malignancies. Since changes in expression of HMGA are considered as marker of tumor progression, it is possible that similar changes in expression of NUCKS could be useful tool in diagnosis and prognosis of breast cancer. For identification and analysis of NUCKS we used proteomic and histochemical methods. Analysis of patient-matched samples of normal and breast cancer by mass spectrometry revealed elevated levels of NUCKS in protein extracts from ductal breast cancers. We elicited specific antibodies against NUCKS and used them for immunohistochemistry in invasive ductal carcinoma of breast. We found high expression of NUCKS in 84.3% of cancer cells. We suggest that such overexpression of NUCKS can play significant role in breast cancer biology.


Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.

  • Betsy T Kren‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Targeted therapies for aggressive breast cancers like triple negative breast cancer (TNBC) are needed. The use of small interfering RNAs (siRNAs) to disable expression of survival genes provides a tool for killing these cancer cells. Cyclin dependent kinase 11 (CDK11) is a survival protein kinase that regulates RNA transcription, splicing and mitosis. Casein kinase 2 (CK2) is a survival protein kinase that suppresses cancer cell death. Eliminating the expression of these genes has potential therapeutic utility for breast cancer.


Casein kinase 1 promotes initiation of clathrin-mediated endocytosis.

  • Yutian Peng‎ et al.
  • Developmental cell‎
  • 2015‎

In budding yeast, over 60 proteins functioning in at least five modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization.


Casein kinase 2 phosphorylates GluA1 and regulates its surface expression.

  • Marc P Lussier‎ et al.
  • The European journal of neuroscience‎
  • 2014‎

Controlling the density of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synapses is essential for regulating the strength of excitatory neurotransmission. In particular, the phosphorylation of AMPARs is important for defining both synaptic expression and intracellular routing of receptors. Phosphorylation is a post-translational modification known to regulate many cellular events and the C-termini of glutamate receptors are important targets. Recently, the first intracellular loop1 region of the GluA1 subunit of AMPARs was reported to regulate synaptic targeting through phosphorylation of S567 by Ca2+ /calmodulin-dependent protein kinase II (CaMKII). Intriguingly, the loop1 region of all four AMPAR subunits contains many putative phosphorylation sites (S/T/Y), leaving the possibility that other kinases may regulate AMPAR surface expression via phosphorylation of the loop regions. To explore this hypothesis, we used in vitro phosphorylation assays with a small panel of purified kinases and found that casein kinase 2 (CK2) phosphorylates the GluA1 and GluA2 loop1 regions, but not GluA3 or GluA4. Interestingly, when we reduced the endogenous expression of CK2 using a specific short hairpin RNA against the regulatory subunit CK2β, we detected a reduction of GluA1 surface expression, whereas GluA2 was unchanged. Furthermore, we identified S579 of GluA1 as a substrate of CK2, and the expression of GluA1 phosphodeficient mutants in hippocampal neurons displayed reduced surface expression. Therefore, our study identifies CK2 as a regulator of GluA1 surface expression by phosphorylating the intracellular loop1 region.


The casein kinase 2α promotes the occurrence polycystic ovary syndrome.

  • Chuan-Jin Yu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by hyperandrogenism, polycystic ovaries, and anovulation. Previous studies have revealed that androgen receptors (ARs) are strongly associated with hyperandrogenism and abnormalities in folliculogenesis in patients with PCOS. However, the kinases responsible for androgen receptor activity, especially in granulosa cells, and the role of casein kinase 2α (CK2α) specifically in the pathogenesis of PCOS, remain unknown. Here, we show that both CK2α protein and mRNA levels were higher in luteinized granulosa cells of patients with PCOS compared with non-PCOS, as well as in the ovarian tissues of mice with a dehydroepiandrosterone-induced PCOS-like phenotype, compared with controls. In addition, CK2α not only interacted with AR in vivo and in vitro, but it also phosphorylated and stabilized AR, triggering AR and ovulation related genes excessive expression. CK2α also promoted cell proliferation in the KGN cell line and inhibited apoptosis. Collectively, the finding highlighted that the CK2α-AR axis probably caused the etiology of the PCOS. Thus, CK2α might be a promising clinical therapeutic target for PCOS treatment.


The role of casein kinase I in the Drosophila circadian clock.

  • Jeffrey L Price‎ et al.
  • Methods in enzymology‎
  • 2015‎

The circadian clock mechanism in organisms as diverse as cyanobacteria and humans involves both transcriptional and posttranslational regulation of key clock components. One of the roles for the posttranslational regulation is to time the degradation of the targeted clock proteins, so that their oscillation profiles are out of phase with respect to those of the mRNAs from which they are translated. In Drosophila, the circadian transcriptional regulator PERIOD (PER) is targeted for degradation by a kinase (DOUBLETIME or DBT) orthologous to mammalian kinases (CKIɛ and CKIδ) that also target mammalian PER. Since these kinases are not regulated by second messengers, the mechanism (if any) for their regulation is not known. We are investigating the possibility that regulation of DBT is conferred by other proteins that associate with DBT and PER. In this chapter, the methods we are employing to identify and analyze these factors are discussed. These methods include expression of wild type and mutant proteins with the GAL4/UAS binary expression approach, analysis of DBT in Drosophila S2 cells, in vitro kinase assays with DBT isolated from S2 cells, and proteomic analysis of DBT-containing complexes and of DBT phosphorylation with mass spectrometry. The work has led to the discovery of a previously unrecognized circadian rhythm component (Bride of DBT, a noncanonical FK506-binding protein) and the mapping of autophosphorylation sites within the DBT C-terminal domain with potential regulatory roles.


Neurotrophin-induced activation of casein kinase 2 in rat hippocampal slices.

  • P R Blanquet‎
  • Neuroscience‎
  • 1998‎

Casein kinase 2 is present in the brain, including the hippocampus. It is associated with long-term potentiation and is known to be involved in phosphorylation of proteins potentially important for neuroplasticity, but regulation of its activity in neuronal cells is not yet known. In the present work, it was found that brain-derived neurotrophic factor and neurotrophin-4 control the activity of casein kinase 2 in hippocampal slices of adult rat. It is shown that: (i) treatment of slices for 4 h with the neurotrophins results in a five-fold increase in the activity of cytosolic casein kinase 2; (ii) this effect does not require protein synthesis. In addition, using calcium chelators, phospholipase inhibitors and protein kinase inhibitors, evidence is provided that: (i) neurotrophin-induced activation of casein kinase 2 is dependent on the availability of intracellular calcium due to stimulation of phospholipase C; (ii) both a tyrosine kinase(s) and a serine/threonine kinase(s) convey the signal of calcium. Since there is now accumulating evidence for involvement of brain-derived neurotrophic factor, intracellular calcium, tyrosine kinases and serine/threonine kinases in the regulation of synaptic plasticity, it is suggested that the signalling cascade detected here might contribute to control of synaptic strength in the hippocampus.


Anticancer alkaloid lamellarins inhibit protein kinases.

  • Dianne Baunbaek‎ et al.
  • Marine drugs‎
  • 2008‎

Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dual-specificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.


Generation of High Affinity Anti-Peptide Polyclonal Antibodies Recognizing Goat αs1-Casein.

  • Aliah Zannierah Mohsin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The chemical, technological and allergy properties of goat's milk are significantly affected by the level of αs1-casein. Detection and quantification of αs1-casein requires high-specificity methods to overcome high-sequence similarity between this protein and others in the casein family. Unavailability of antibodies with high affinity and specificity towards goat αs1-casein hinders the development of immuno-based analytical methods such as enzyme-linked immunosorbent assay (ELISA) and biosensors. Here, we report the generation of polyclonal antibodies (or immunoglobulins, IgGs) raised towards goat αs1-casein N- (Nter) and C-terminal (Cter) peptide sequences. The Nter and Cter peptides of goat αs1-casein were immunized in rabbits for the generation of antisera, which were purified using protein G affinity chromatography. The binding affinity of the antisera and purified IgGs were tested and compared using indirect ELISA, where peptide-BSA conjugates and goat αs1-casein were used as the coating antigens. The Nter antiserum displayed higher titer than Cter antiserum, at 1/64,000 and 1/32,000 dilutions, respectively. The purification step further yielded 0.5 mg/mL of purified IgGs from 3 mL of antisera. The purified Nter IgG showed a significantly (p < 0.05) higher binding affinity towards peptide-BSA and goat αs1-casein, with lower Kd value at 5.063 × 10-3 μM compared to 9.046 × 10-3 μM for the Cter IgG. A cross-reactivity test showed that there was no binding in neither Nter nor Cter IgGs towards protein extracts from the milk of cow, buffalo, horse and camel. High-quality antibodies generated will allow further development of immuno-based analytical methods and future in vitro studies to be conducted on goat αs1-casein.


Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock.

  • Lorna S Kategaya‎ et al.
  • PloS one‎
  • 2012‎

Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2.


Casein Kinase 1 Family Member CK1δ/Hrr25 Is Required for Autophagosome Completion.

  • Yuting Li‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Autophagy starts with the initiation and nucleation of isolation membranes, which further expand and seal to form autophagosomes. The regulation of isolation membrane closure remains poorly understood. CK1δ is a member of the casein kinase I family of serine/threonine specific kinases. Although CK1δ is reported to be involved in various cellular processes, its role in autophagy is unknown. Here, we show that CK1δ regulates the progression of autophagy from the formation of isolation membranes to autophagosome closure, and is essential for macroautophagy. CK1δ depletion results in impaired autophagy flux and the accumulation of unsealed isolation membranes. The association of LC3 with ATG9A, ATG14L, and ATG16L1 was found to be increased in CK1δ-depleted cells. The role of CK1δ in autophagosome completion appears to be conserved between yeasts and humans. Our data reveal a key role for CK1δ/Hrr25 in autophagosome completion.


Casein Kinase 1α Regulates Testosterone Synthesis and Testis Development in Adult Mice.

  • Hongzhou Guo‎ et al.
  • Endocrinology‎
  • 2023‎

Casein kinase 1α (CK1α) is a main component of the Wnt/β-catenin signaling pathway, which participates in multiple biological processes. Our recent study demonstrated that CK1α is expressed in both germ cells and somatic cells of mouse testes and regulates spermatogenesis. However, little information is known about the role of CK1α in regulating the development of somatic cells in mouse testes. Our results demonstrated that conditional disruption of CK1α in murine Leydig cells sharply decreased testosterone levels; markedly affected testis development, sperm motility, and sperm morphology; and caused subfertility. The germ cell population was partially decreased in CK1α conditional knockout (cKO) mice, while the proliferation of Leydig cells and Sertoli cells was not affected. Furthermore, in vitro results verified that luteinizing hormone upregulates CK1α through the luteinizing hormone/protein kinase/Epidermal Growth Factor Receptor/extracellular regulated protein kinases/2 signaling pathway and that CK1α interacts with and phosphorylates EGFR, which subsequently activates the phosphorylation of ERK1/2, thereby promoting testosterone synthesis. In addition, high-dose testosterone propionate partially rescued the phenotype observed in cKO mice. This study provides new insights into the role of CK1α in steroidogenesis and male reproduction.


Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3.

  • Dianrong Li‎ et al.
  • eLife‎
  • 2020‎

Casein kinases are a large family of intracellular serine/threonine kinases that control a variety of cellular signaling functions. Here we report that a member of casein kinase 1 family, casein kinase 1G2, CSNK1G2, binds and inhibits the activation of receptor-interacting kinase 3, RIPK3, thereby attenuating RIPK3-mediated necroptosis. The binding of CSNK1G2 to RIPK3 is triggered by auto-phosphorylation at serine 211/threonine 215 sites in its C-terminal domain. CSNK1G2-knockout mice showed significantly enhanced necroptosis response and premature aging of their testis, a phenotype that was rescued by either double knockout of the Ripk3 gene or feeding the animal with a RIPK1 kinase inhibitor-containing diet. Moreover, CSNK1G2 is also co-expressed with RIPK3 in human testis, and the necroptosis activation marker phospho-MLKL was observed in the testis of old (>80) but not young men, indicating that the testis-aging program carried out by the RIPK3-mediated and CSNK1G2-attenuated necroptosis is evolutionarily conserved between mice and men.


Casein kinase-1γ1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3.

  • Song-Yi Lee‎ et al.
  • Cell death & disease‎
  • 2019‎

Upon necroptosis activation, receptor interacting serine/threonine kinase (RIPK)1 and RIPK3 form a necrosome complex with pseudokinase mixed lineage kinase-like (MLKL). Although protein phosphorylation is a key event for RIPK1 and RIPK3 activation in response to a necroptosis signal, relatively little is known about other factors that might regulate the activity of these kinases or necrosome formation. Through a gain-of-function screen with 546 kinases and 127 phosphatases, we identified casein kinase 1 gamma (CK1γ) as a candidate necroptosis-promoting factor. Here, we show that the decreased activity or amounts of CK1γ1 and CK1γ3, either by treatment with a chemical inhibitor or knockdown in cells, reduced TNFα-induced necroptosis. Conversely, ectopic expression of CK1γ1 or CK1γ3 exacerbated necroptosis, but not apoptosis. Similar to RIPK1 and RIPK3, CK1γ1 was also cleaved at Asp343 by caspase-8 during apoptosis. CK1γ1 and CK1γ3 formed a protein complex and were recruited to the necrosome harboring RIPK1, RIPK3 and MLKL. In particular, an autophosphorylated form of CK1γ3 at Ser344/345 was detected in the necrosome and was required to mediate the necroptosis. In addition, in vitro assays with purified proteins showed that CK1γ phosphorylated RIPK3, affecting its activity, and in vivo assays showed that the CK1γ-specific inhibitor Gi prevented abrupt death in mice with hypothermia in a model of TNFα-induced systemic inflammatory response syndrome. Collectively, these data suggest that CK1γ1 and CK1γ3 are required for TNFα-induced necroptosis likely by regulating RIPK3.


Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction.

  • Y Honaker‎ et al.
  • Oncogene‎
  • 2010‎

The Cdc25A protein phosphatase drives cell-cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell-cycle progression, bypass of cell-cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis has an important role in balancing Cdc25A levels. Cdc25A contains a DS(82)G motif whose phosphorylation is targeted by beta-TrCP E3 ligase during interphase. Targeting beta-TrCP to Cdc25A requires phosphorylation of serines 79 (S79) and 82 (S82). Here, we report that casein kinase 1 alpha (CK1alpha) phosphorylates Cdc25A on both S79 and S82 in a hierarchical manner requiring prior phosphorylation of S76 by Chk1 or GSK-3beta. This facilitates beta-TrCP binding and ubiquitin-mediated proteolysis of Cdc25A throughout interphase and after exposure to genotoxic stress. The priming of Cdc25A by at least three kinases (Chk1, GSK-3beta, CK1alpha), some of which also require priming, ensures diverse extra- and intracellular signals interface with Cdc25A to precisely control cell division.


PAK Kinases Target Sortilin and Modulate Its Sorting.

  • Lone Tjener Pallesen‎ et al.
  • Molecular and cellular biology‎
  • 2020‎

The multifunctional type 1 receptor sortilin is involved in endocytosis and intracellular transport of ligands. The short intracellular domain of sortilin binds several cytoplasmic adaptor proteins (e.g., the AP-1 complex and GGA1 to -3), most of which target two well-defined motifs: a C-terminal acidic cluster dileucine motif and a YXXΦ motif in the proximal third of the domain. Both motifs contribute to endocytosis as well as Golgi-endosome trafficking of sortilin. The C-terminal acidic cluster harbors a serine residue, which is subject to phosphorylation by casein kinase. Phosphorylation of this serine residue is known to modulate adaptor binding to sortilin. Here, we show that the cytoplasmic domain of sortilin also engages Rac-p21-activated kinases 1 to 3 (PAK1-3) via a binding segment that includes a tyrosine-based motif, also encompassing a serine residue. We further demonstrate that PAK1-3 specifically phosphorylate this serine residue and that this phosphorylation alters the affinity for AP-1 binding and consequently changes the intracellular localization of sortilin as a result of modulated trafficking. Our findings suggest that trafficking of ligands bound to sortilin is in part regulated by group A PAK kinases, which are downstream effectors of Rho GTPases and are known to affect a variety of processes by remodeling the cytoskeleton and by promoting gene transcription and cell survival.


Regulation of mitochondrial protein import by cytosolic kinases.

  • Oliver Schmidt‎ et al.
  • Cell‎
  • 2011‎

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: