Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,429 papers

Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases.

  • Tatjana Holzer‎ et al.
  • The Journal of cell biology‎
  • 2019‎

In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage-bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.


A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system.

  • Shaowei Wang‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability.


The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases.

  • Shu Sun‎ et al.
  • BMC musculoskeletal disorders‎
  • 2014‎

Matrix metalloproteinase-3 (MMP-3) plays an important role in the pathology of rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Measurement of active MMP-3 in clinical samples could provide information about progression of rheumatoid diseases, and potentially response to treatment. Hence, we aimed to develop a sensitive assay specifically measuring the active form of MMP-3 (act-MMP-3) both in ex vivo models and in human sera.


Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures.

  • Peter A Bell‎ et al.
  • Biology open‎
  • 2013‎

Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM) in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.


Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration.

  • Shuai Zhang‎ et al.
  • Theranostics‎
  • 2019‎

Rationale The small molecule Kartogenin (KGN) promotes cartilage regeneration in osteoarthritis (OA) by activating stem cells differentiation, but its pharmacological mode-of-action remains unclear. KGN can be cleaved into 4-aminobiphenyl (4-ABP) and phthalic acid (PA) following enzymolysis of an amide bond. Therefore, this study investigated whether 4-ABP or PA exerted the same action as KGN. Methods KGN, 4-ABP and PA were analyzed in cartilage of mice after oral, intravenous or intra-articular administration of KGN by liquid chromatography-mass spectrometry method. Their effect on proliferation and chondrogenic differentiation of mesenchymal stem cells (MSC) was evaluated in vitro. Furthermore, their effect on cartilage preservation was tested in mice OA model induced by destabilization of medial meniscus. OA severity was quantified using OARSI histological scoring. Transcriptional analysis was used to find the possible targets of the chemicals, which were further validated. Results We demonstrated that while oral or intra-articular KGN delivery effectively ameliorated OA phenotypes in mice, only 4-ABP was detectable in cartilage. 4-ABP could induce chondrogenic differentiation and proliferation of MSC in vitro and promote cartilage repair in OA mouse models mainly by increasing the number of CD44+/CD105+ stem-cell and prevention of matrix loss. These effect of 4-ABP was stronger than that of KGN. Transcriptional profiling of 4-ABP-stimulated MSC suggested that RPS6KA2 and the PI3K-Akt pathway were 4-ABP targets; 4-ABP could activate the PI3K-Akt pathway to promote MSC proliferation and repair OA injury, which was blocked in RPS6KA2-knockdown MSC or RPS6KA2-deficient mice.Conclusion 4-ABP bio-distribution in cartilage promotes proliferation and chondrogenic differentiation of MSC, and repairs osteoarthritic lesions via PI3K-Akt pathway activation.


Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering.

  • Kevin Behan‎ et al.
  • Biomolecules‎
  • 2022‎

Articular cartilage (AC) possesses a limited healing potential, meaning that untreated focal joint defects typically progress, leading to the development of degenerative diseases such as osteoarthritis. Several clinical strategies exist that aim to regenerate AC; however, recapitulation of a fully functional, load-bearing tissue remains a significant challenge. This can be attributed, at least in part, to a paucity of biomaterials that truly mimic the native tissue and provide appropriate cues to direct its regeneration. The main structural component of articular cartilage, type II collagen, does not readily gelate at body temperature, challenging the development of cartilage extracellular matrix (cECM)-derived injectable hydrogels and bioinks for AC tissue engineering and bioprinting applications. Here, we describe the development and rheological characterisation of a methacrylated cartilage ECM-based hydrogel/bioink (cECM-MA), which could be photocrosslinked when exposed to ultraviolet (UV) light. Functionalisation of the collagen backbone with methacryloyl groups had a negligible effect on triple helix stability, as demonstrated by circular dichroism spectroscopy. These cECM-MA bioinks demonstrated shear-thinning properties and could be loaded with bone marrow mesenchymal stem cells (BM-MSCs), micro-extruded to generate self-supporting 3D constructs of predefined size and shape, and then photocrosslinked using UV light. Analysis of the cell-laden constructs showed that the BM-MSCs were viable post-printing and underwent chondrogenesis in vitro, generating a tissue rich in sulphated glycosaminoglycans and collagens. These results support the use of methacrylated, tissue-specific ECM-derived hydrogels as bioinks for 3D bioprinting and/or as injectables for cartilage tissue engineering applications.


RSK-3 promotes cartilage regeneration via interacting with rpS6 in cartilage stem/progenitor cells.

  • Shuai Zhang‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Cartilage stem/progenitor cells (CSPC) are a promising cellular source to promote endogenous cartilage regeneration in osteoarthritis (OA). Our previous work indicates that ribosomal s6 kinase 3 (RSK-3) is a target of 4-aminobiphenyl, a chemical enhancing CSPC-mediated cartilage repair in OA. However, the primary function and mechanism of RSK-3 in CSPC-mediated cartilage pathobiology remain undefined. Methods: We systematically assessed the association of RSK-3 with OA in three mouse strains with varying susceptibility to OA (MRL/MpJ>CBA>STR/Ort), and also RSK-3-/- mice. Bioinformatic analysis was used to identify the possible mechanism of RSK-3 affecting CSPC, which was further verified in OA mice and CSPC with varying RSK-3 expression induced by chemicals or gene modification. Results: We demonstrated that the level of RSK-3 in cartilage was positively correlated with cartilage repair capacities in three mouse strains (MRL/MpJ>CBA>STR/Ort). Enhanced RSK-3 expression by 4-aminobiphenyl markedly attenuated cartilage injury in OA mice and inhibition or deficiency of RSK-3 expression, on the other hand, significantly aggravated cartilage damage. Transcriptional profiling of CSPC from mice suggested the potential role of RSK-3 in modulating cell proliferation. It was further shown that the in vivo and in vitro manipulation of the RSK-3 expression indeed affected the CSPC proliferation. Mechanistically, ribosomal protein S6 (rpS6) was activated by RSK-3 to accelerate CSPC growth. Conclusion: RSK-3 is identified as a key regulator to enhance cartilage repair, at least partly by regulating the functionality of the cartilage-resident stem/progenitor cells.


Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

  • Yangzi Jiang‎ et al.
  • Stem cells translational medicine‎
  • 2016‎

Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies.


Three-Dimensional Cartilage Regeneration Using Engineered Cartilage Gel With a 3D-Printed Polycaprolactone Framework.

  • Gaoyang Wu‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2022‎

The feasibility of the three-dimensional (3D) cartilage regeneration technology based on the "steel (framework)-reinforced concrete (engineered cartilage gel, ECG)" concept has been verified in large animals using a decalcified bone matrix (DBM) as the framework. However, the instability of the source, large sample variation, and lack of control over the 3D shape of DBM have greatly hindered clinical translation of this technology. To optimize cartilage regeneration using the ECG-framework model, the current study explores the feasibility of replacing the DBM framework with a 3D-printed polycaprolactone (PCL) framework. The PCL framework showed good biocompatibility with ECG and achieved a high ECG loading efficiency, similar to that of the DBM framework. Furthermore, PCL-ECG constructs caused a milder inflammatory response in vivo than that induced by DBM-ECG constructs, which was further supported by an in vitro macrophage activation experiment. Notably, the PCL-ECG constructs successfully regenerated mature cartilage and essentially maintained their original shape throughout 8 weeks of subcutaneous implantation. Quantitative analysis revealed that the GAG and total collagen contents of the regenerated cartilage in the PCL-ECG group were significantly higher than those in the DBM-ECG group. The results indicated that the 3D-printed PCL framework-a clinically approved biomaterial with multiple advantages including customizable shape design, mechanical strength control, and standardized production-can serve as an excellent framework for supporting the 3D cartilage regeneration of ECG. This provides a feasible novel strategy for the clinical translation of ECG-based 3D cartilage regeneration.


BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage.

  • Hanxu Cai‎ et al.
  • Regenerative biomaterials‎
  • 2020‎

The self-healing capacity of cartilage was limited due to absence of vascular, nervous and lymphatic systems. Although many clinical treatments have been used in cartilage defect repair and shown a promising repair result in short term, however, regeneration of complete zonal structure with physiological function, reconstruction cartilage homeostasis and maintaining long-term repair was still an unbridgeable chasm. Cartilage has complex zonal structure and multiple physiological functions, especially, superficial and calcified cartilage played an important role in keeping homeostasis. To address this hurdle of regenerating superficial and calcified cartilage, injectable tissue-induced type I collagen (Col I) hydrogel-encapsulated BMSCs was chosen to repair cartilage damage. After 1 month implantation, the results demonstrated that Col I gel was able to induce BMSCs differentiation into chondrocytes, and formed hyaline-like cartilage and the superficial layer with lubrication function. After 3 months post-surgery, chondrocytes at the bottom of the cartilage layer would undergo hypertrophy and promote the regeneration of calcified cartilage. Six months later, a continuous anatomical tidemark and complete calcified interface were restored. The regeneration of neo-hyaline cartilage was similar with adjacent normal tissue on the thickness of the cartilage, matrix secretion, collagen type and arrangement. Complete multilayer zonal structure with physiological function remodeling indicated that BMSCs-assisted injectable Col I hydrogel could reconstruct cartilage homeostasis and maintain long-term therapeutic effect.


Cell therapy for cartilage repair.

  • Charlotte H Hulme‎ et al.
  • Emerging topics in life sciences‎
  • 2021‎

Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.


Rationale and pre-clinical evidences for the use of autologous cartilage micrografts in cartilage repair.

  • Marco Viganò‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2018‎

The management of cartilage lesions is an open issue in clinical practice, and regenerative medicine represents a promising approach, including the use of autologous micrografts whose efficacy was already tested in different clinical settings. The aim of this study was to characterize in vitro the effect of autologous cartilage micrografts on chondrocyte viability and differentiation and perform an evaluation of their application in racehorses affected by joint diseases.


iCartiGD: the Integrated Cartilage Gene Database.

  • Ming-Yiu Yeung‎ et al.
  • BMC genetics‎
  • 2007‎

Diseases of cartilage, such as arthritis and degenerative disc disease, affect the majority of the general population, particularly with ageing. Discovery and understanding of the genes and pathways involved in cartilage biology will greatly assist research on the development, degeneration and disorders of cartilage.


Transcriptomic profiling of cartilage ageing.

  • Mandy Jayne Peffers‎ et al.
  • Genomics data‎
  • 2014‎

The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386).


Raman spectroscopic insight into osteoarthritic cartilage regeneration by mRNA therapeutics encoding cartilage-anabolic transcription factor Runx1.

  • Giuseppe Pezzotti‎ et al.
  • Materials today. Bio‎
  • 2022‎

While joint arthroplasty remains nowadays the most popular option available to repair chronically degenerated osteoarthritic joints, possibilities are recently emerging for regeneration of damaged cartilage rather than its replacement with artificial biomaterials. This latter strategy could allow avoiding the quite intrusive surgical procedures associated with total joint replacement. Building upon this notion, we first apply Raman spectroscopy to characterize diseased cartilage in a mice model of instability-induced knee osteoarthritis (OA) upon medial collateral ligament (MCL) and medial meniscus (MM) transections. Then, we examine the same OA model after cartilage regeneration by means of messenger RNA (mRNA) delivery of a cartilage-anabolic runt-related transcription factor 1 (RUNX1). Raman spectroscopy is shown to substantiate at the molecular scale the therapeutic effect of the Runx1 mRNA cartilage regeneration approach. This study demonstrates how the Raman spectroscopic method could support and accelerate the development of new therapies for cartilage diseases.


Initial Harm Reduction by N-Acetylcysteine Alleviates Cartilage Degeneration after Blunt Single-Impact Cartilage Trauma in Vivo.

  • Jana Riegger‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Joint injuries are highly associated with the development of post-traumatic osteoarthritis. Previous studies revealed cell- and matrix-protective effects of N-acetylcysteine (NAC) after ex vivo cartilage trauma, while chondroanabolic stimulation with bone morphogenetic protein 7 (BMP7) enhanced type II collagen (COL2) expression. Here, as a next step, we investigated the combined and individual efficacy of intra-articular antioxidative and chondroanabolic treatment in a rabbit in vivo cartilage trauma model. Animals were randomly divided into group A (right joint: trauma (T); left joint: T+BMP7) and group B (right joint: T+NAC; left joint: T+BMP7+NAC). Condyles were impacted with the use of a spring-loaded impact device to ensure defined, single trauma administration. After 12 weeks, histopathological analysis was performed and the presence of matrix metalloproteinase 13 (MMP-13) and COL2 was assessed. Trauma-induced hypocellularity, MMP-13 expression, and cell cluster formation were reduced in NAC-treated animals. In contrast, BMP7 further increased cluster formation. Moreover, synovial concentrations of COL2 carboxy propeptide (CPII) and proteoglycan staining intensities were enhanced in NAC- and NAC+BMP7-treated joints. For the first time, the efficacy of NAC regarding early harm reduction after blunt cartilage trauma was demonstrated in vivo. However, parallel administration of BMP7 was not significantly superior compared to NAC alone.


Proteoglycan breakdown from bovine nasal cartilage is increased, and from articular cartilage is decreased, by extracellular ATP.

  • C J Brown‎ et al.
  • Biochimica et biophysica acta‎
  • 1997‎

The addition of ATP, but not ADP or AMP, to the culture media of bovine nasal cartilage explants caused an acceleration in the rate of proteoglycan loss from the tissue. The ATP-stimulated loss of proteoglycan was not inhibited by the IL1-receptor antagonist protein, but was partially inhibited by the presence of ADP or AMP. The proteolytic events resulting from the presence of ATP were found to be similar to those following treatment with IL1, in that inhibitors of the cysteine-peptidase cathepsin B, serine-proteinases with trypsin-like specificity, and of some of the matrixins, could all prevent proteoglycan loss, which was mediated, at least in part, by the action of 'aggrecanase'. In contrast to its effects on nasal cartilage, ATP inhibited basal and stimulated proteoglycan release from articular cartilage. Both ADP and AMP had no effect on proteoglycan release in articular cartilage but enhanced the response to ATP when added concurrently. We conclude that extracellular ATP, probably acting via P2-purinoceptors, stimulates proteoglycan breakdown from bovine nasal cartilage and thus, may have a role in diseases which primarily involve destruction of non-articular cartilage. Extracellular ATP has, in contrast, a chondroprotective effect on bovine articular cartilage.


Striking a new path in reducing cartilage breakdown: combination of antioxidative therapy and chondroanabolic stimulation after blunt cartilage trauma.

  • Jana Riegger‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Cartilage injury can trigger crucial pathomechanisms, including excessive cell death and expression of matrix-destructive enzymes, which contribute to the progression of a post-traumatic osteoarthritis (PTOA). With the intent to create a novel treatment strategy for alleviating trauma-induced cartilage damage, we complemented a promising antioxidative approach based on cell and chondroprotective N-acetyl cysteine (NAC) by chondroanabolic stimulation. Overall, three potential pro-anabolic growth factors - IGF-1, BMP7 and FGF18 - were tested comparatively with and without NAC in an ex vivo human cartilage trauma-model. For that purpose, full-thickness cartilage explants were subjected to a defined impact (0.59 J) and subsequently treated with the substances. Efficacy of the therapeutic approaches was evaluated by cell viability, as well as various catabolic and anabolic biomarkers, representing the present matrix turnover. Although monotherapy with NAC, FGF18 or BMP7 significantly prevented trauma-induced cell dead and breakdown of type II collagen, combination of NAC and one of the growth factors did not yield significant benefit as compared to NAC alone. IGF-1, which possessed only moderate cell protective and no chondroprotective qualities after cartilage trauma, even reduced NAC-mediated cell and chondroprotection. Despite significant promotion of type II collagen expression by IGF-1 and BMP7, addition of NAC completely suppressed this chondroanabolic effect. All in all, NAC and BMP7 emerged as best combination. As our findings indicate limited benefits of the simultaneous multidirectional therapy, a sequential application might circumvent adverse interferences, such as suppression of type II collagen biosynthesis, which was found to be reversed 7 days after NAC withdrawal.


A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose.

  • David Pretzel‎ et al.
  • Arthritis research & therapy‎
  • 2013‎

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.


Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics.

  • Venkatachalam Natarajan‎ et al.
  • PloS one‎
  • 2015‎

Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the in vivo cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish the value of intra-articular injections of polyphenol in stabilization of cartilage collagen against degradation and indicate the unique beneficial role of injectable polyphenols in protecting the cartilage in arthritic conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: