Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 541 papers

Mitochondrial Cardiomyopathies.

  • Ayman W El-Hattab‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2016‎

Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.


miR-21 in Human Cardiomyopathies.

  • Surina Surina‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

miR-21 is a 22-nucleotide long microRNA that matches target mRNAs in a complementary base pairing fashion and regulates gene expression by repressing or degrading target mRNAs. miR-21 is involved in various cardiomyopathies, including heart failure, dilated cardiomyopathy, myocardial infarction, and diabetic cardiomyopathy. Expression levels of miR-21 notably change in both heart and circulation and provide cardiac protection after heart injury. In the meantime, miR-21 also tightly links to cardiac dysfunctions such as cardiac hypertrophy and fibrosis. This review focuses on the miR-21 expression pattern and its functions in diseased-heart and further discusses the feasibility of miR-21 as a biomarker and therapeutic target in cardiomyopathies.


Concealed Inherited Cardiomyopathies Detected in Cardio-Oncology Screening.

  • Rebeca Lorca‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Basal cardiovascular risk assessment in cardio-oncology is essential. Integrating clinical information, ECG and transthoracic echocardiogram can identify concealed inherited cardiomyopathies (ICMPs) with potential added risk of cardiotoxicity. We aimed to evaluate the impact of our Cardio-Oncology Unit design in detecting concealed ICMPs.


Hearing Profile in Patients with Dilated and Hypertrophic Cardiomyopathies.

  • Gehan Abd El-Rahman El-Zarea‎ et al.
  • Electronic physician‎
  • 2016‎

Cardiomyopathy may cause disruptions in the micro-vascular system of the stria vascularis in the cochlea, and, subsequently, may result in cochlear degeneration. Degeneration in the stria vascularis affects the physical and chemical processes in the organ of Corti, thereby causing a possible hearing impairment. The objective of this study was to assess the hearing profiles of patients with dilated and hypertrophic cardiomyopathies to determine the relationship between the degree of hearing loss and the degree and duration of the disease and to compare the dilated and hypertrophic cardiomyopathies as regards hearing profile.


Genotyping Indian patients with primary cardiomyopathies-analysis of database.

  • Vanya Vaidya‎ et al.
  • Indian heart journal‎
  • 2023‎

Each population has its own unique genotype. Genotyping data on Indian cardiomyopathy patients is lacking.


Telomere shortening is a hallmark of genetic cardiomyopathies.

  • Alex C Y Chang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Hypereosinophilic Syndrome, Cardiomyopathies, and Sudden Cardiac Death in Superinvasive Opisthorchiasis.

  • Vitaly G Bychkov‎ et al.
  • Cardiology research and practice‎
  • 2019‎

Cardiovascular pathology in patients with superinvasive opisthorchiasis is characterized by severe changes in haemodynamics and myocardial metabolism, impaired automatism, excitability, and conduction of the heart muscle. An analysis of 578 cases (medical and outpatient records and reports of pathoanatomical and forensic autopsies) recorded in healthcare facilities treating opisthorchiasis patients with a hyperendemic focus was carried out. We identified a set of cardiac changes in patients with hypereosinophilic syndrome associated with superinvasive opisthorchiasis infection, classified the pathological processes in accordance with ICD-10, and described their pathogenesis.


EMQN: Recommendations for genetic testing in inherited cardiomyopathies and arrhythmias.

  • Jesse B Hayesmoore‎ et al.
  • European journal of human genetics : EJHG‎
  • 2023‎

Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.


Genetic advances in sarcomeric cardiomyopathies: state of the art.

  • Carolyn Y Ho‎ et al.
  • Cardiovascular research‎
  • 2015‎

Genetic studies in the 1980s and 1990s led to landmark discoveries that sarcomere mutations cause both hypertrophic and dilated cardiomyopathies. Sarcomere mutations also likely play a role in more complex phenotypes and overlap cardiomyopathies with features of hypertrophy, dilation, diastolic abnormalities, and non-compaction. Identification of the genetic cause of these important conditions provides unique opportunities to interrogate and characterize disease pathogenesis and pathophysiology, starting from the molecular level and expanding from there. With such insights, there is potential for clinical translation that may transform management of patients and families with inherited cardiomyopathies. If key pathways for disease development can be identified, they could potentially serve as targets for novel disease-modifying or disease-preventing therapies. By utilizing gene-based diagnostic testing, we can identify at-risk individuals prior to the onset of clinical disease, allowing for disease-modifying therapy to be initiated early in life, at a time that such treatment may be most successful. In this section, we review the current application of genetics in clinical management, focusing on hypertrophic cardiomyopathy as a paradigm; discuss state-of-the-art genetic testing technology; review emerging knowledge of gene expression in sarcomeric cardiomyopathies; and discuss both the prospects, as well as the challenges, of bringing genetics to medicine.


Increased A-to-I RNA editing in atherosclerosis and cardiomyopathies.

  • Tomer D Mann‎ et al.
  • PLoS computational biology‎
  • 2023‎

Adenosine-to-inosine RNA editing is essential to prevent undesired immune activation. This diverse process alters the genetic content of the RNA and may recode proteins, change splice sites and miRNA targets, and mimic genomic mutations. Recent studies have associated or implicated aberrant editing with pathological conditions, including cancer, autoimmune diseases, and neurological and psychiatric conditions. RNA editing patterns in cardiovascular tissues have not been investigated systematically so far, and little is known about its potential role in cardiac diseases. Some hints suggest robust editing in this system, including the fact that ADARB1 (ADAR2), the main coding-sequence editor, is most highly expressed in these tissues. Here we characterized RNA editing in the heart and arteries and examined a contributory role to the development of atherosclerosis and two structural heart diseases -Ischemic and Dilated Cardiomyopathies. Analyzing hundreds of RNA-seq samples taken from the heart and arteries of cardiac patients and controls, we find that global editing, alongside inflammatory gene expression, is increased in patients with atherosclerosis, cardiomyopathies, and heart failure. We describe a single recoding editing site and suggest it as a target for focused research. This recoding editing site in the IGFBP7 gene is one of the only evolutionary conserved sites between mammals, and we found it exhibits consistently increased levels of editing in these patients. Our findings reveal that RNA editing is abundant in arteries and is elevated in several key cardiovascular conditions. They thus provide a roadmap for basic and translational research of RNA as a mediator of atherosclerosis and non-genetic cardiomyopathies.


Distinct Myocardial Transcriptomic Profiles of Cardiomyopathies Stratified by the Mutant Genes.

  • Katharina Sielemann‎ et al.
  • Genes‎
  • 2020‎

Cardiovascular diseases are the number one cause of morbidity and mortality worldwide, but the underlying molecular mechanisms remain not well understood. Cardiomyopathies are primary diseases of the heart muscle and contribute to high rates of heart failure and sudden cardiac deaths. Here, we distinguished four different genetic cardiomyopathies based on gene expression signatures. In this study, RNA-Sequencing was used to identify gene expression signatures in myocardial tissue of cardiomyopathy patients in comparison to non-failing human hearts. Therefore, expression differences between patients with specific affected genes, namely LMNA (lamin A/C), RBM20 (RNA binding motif protein 20), TTN (titin) and PKP2 (plakophilin 2) were investigated. We identified genotype-specific differences in regulated pathways, Gene Ontology (GO) terms as well as gene groups like secreted or regulatory proteins and potential candidate drug targets revealing specific molecular pathomechanisms for the four subtypes of genetic cardiomyopathies. Some regulated pathways are common between patients with mutations in RBM20 and TTN as the splice factor RBM20 targets amongst other genes TTN, leading to a similar response on pathway level, even though many differentially expressed genes (DEGs) still differ between both sample types. The myocardium of patients with mutations in LMNA is widely associated with upregulated genes/pathways involved in immune response, whereas mutations in PKP2 lead to a downregulation of genes of the extracellular matrix. Our results contribute to further understanding of the underlying molecular pathomechanisms aiming for novel and better treatment of genetic cardiomyopathies.


Clinical utility of genetic tests for inherited hypertrophic and dilated cardiomyopathies.

  • Maria Giovanna Colombo‎ et al.
  • Cardiovascular ultrasound‎
  • 2008‎

Genetic testing has become an increasingly important part of medical practice for heritable form of cardiomyopathies. Hypertrophic cardiomyopathy and about 50% of idiopathic dilatative cardiomyopathy are familial diseases, with an autosomal dominant pattern of inheritance.Some genotype-phenotype correlations can provide important information to target DNA analyses in specific genes. Genetic testing may clarify diagnosis and help the optimal treatment strategies for more malignant phenotypes. In addition, genetic screening of first-degree relatives can help early identification and diagnosis of individuals at greatest risk for developing cardiomyopathy, allowing to focus clinical resources on high-risk family members.This paper provides a concise overview of the genetic etiology as well as the clinical utilities and limitations of genetic testing for the heritable cardiomyopathies.


Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies.

  • Daniel Reichart‎ et al.
  • Science (New York, N.Y.)‎
  • 2022‎

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies.

  • Daniel Brayson‎ et al.
  • JCI insight‎
  • 2019‎

Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues, yet its impact upon the heart is unknown. Here, we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy, and we show that a potentially novel mouse model of cardiac-specific prelamin A accumulation exhibited a phenotype consistent with inflammatory cardiomyopathy, which we observed to be similar to HIV-associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings (a) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (b) have implications for the management of HIV patients with cardiac disease, suggesting protease inhibitors should be replaced with alternative therapies (i.e., nonnucleoside reverse transcriptase inhibitors); and (c) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy.


Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies.

  • Andreas Brodehl‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.


Molecular Signature of Nitroso-Redox Balance in Idiopathic Dilated Cardiomyopathies.

  • Sara Menazza‎ et al.
  • Journal of the American Heart Association‎
  • 2015‎

Idiopathic dilated cardiomyopathy is one of the most common types of cardiomyopathy. It has been proposed that an increase in oxidative stress in heart failure leads to a decrease in nitric oxide signaling, leading to impaired nitroso-redox signaling. To test this hypothesis, we investigated the occurrence of protein S-nitrosylation (SNO) and oxidation in biopsies from explanted dilated cardiomyopathy and nonfailing donor male and female human hearts.


Personalized Interpretation and Clinical Translation of Genetic Variants Associated With Cardiomyopathies.

  • Oscar Campuzano‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Cardiomyopathies are a heterogeneous group of inherited cardiac diseases characterized by progressive myocardium abnormalities associated with mechanical and/or electrical dysfunction. Massive genetic sequencing technologies allow a comprehensive genetic analysis to unravel the cause of disease. However, most identified genetic variants remain of unknown clinical significance due to incomplete penetrance and variable expressivity. Therefore, genetic interpretation of variants and translation into clinical practice remain a current challenge. We performed retrospective comprehensive clinical assessment and genetic analysis in six families, four diagnosed with arrhythmogenic cardiomyopathy, and two diagnosed with hypertrophic cardiomyopathy (HCM). Genetic testing identified three rare variants (two non-sense and one small indel inducing a frameshift), each present in two families. Although each variant is currently classified as pathogenic and the cause of the diagnosed cardiomyopathy, the onset and/or clinical course differed in each patient. New genetic technology allows comprehensive yet cost-effective genetic analysis, although genetic interpretation, and clinical translation of identified variants should be carefully done in each family in a personalized manner.


Endomyocardial biopsies for early detection of mitochondrial disorders in hypertrophic cardiomyopathies.

  • P Rustin‎ et al.
  • The Journal of pediatrics‎
  • 1994‎

Considering the high proportion of unexplained hypertrophic cardiomyopathies on the one hand and the occurrence of cardiomyopathies in several mitochondrial disorders on the other, we hypothesized that isolated hypertrophic cardiomyopathies in infancy could occasionally be the result of defects of oxidative phosphorylation. By means of a scaled-down technique, we were able to investigate oxidative phosphorylation on minute amounts of endomyocardial tissue (1 mg) in three patients with concentric hypertrophic cardiomyopathy (shortening fraction in diameter, 18% to 27%; normal mean +/- 1 SD, 33 +/- 3%) and in control subjects. Although the absolute respiratory chain enzyme activities in the endomyocardial biopsy specimens of the patients were within the low normal range, the determination of the activity ratios allowed us to ascribe hypertrophic cardiomyopathies to respiratory chain enzyme abnormalities in all three cases (complex I, two cases; multiple enzyme deficiency, one case). The respiratory chain enzyme activity ratios, which are normally constant irrespective of the tissue tested, were markedly abnormal in all three patients (cytochrome c oxidase/reduced nicotinamide-adenine dinucleotide cytochrome c reductase, 4.6 to 10.4; normal mean +/- 1 SD, 2.9 +/- 0.5). We conclude that mitochondrial disorders should be regarded as potential causes of hypertrophic cardiomyopathy in early infancy. Because cardiac catheterization is routinely performed for hemodynamic investigation of cardiomyopathies, we suggest that endomyocardial biopsies be considered as a tool for early detection of mitochondrial cardiomyopathies, especially in hypertrophic forms of the disease.


Non-familial cardiomyopathies in Lebanon: exome sequencing results for five idiopathic cases.

  • Marwan M Refaat‎ et al.
  • BMC medical genomics‎
  • 2019‎

Cardiomyopathies affect more than 0.5% of the general population. They are associated with high risk of sudden cardiac death, which can result from either heart failure or electrical abnormalities. Although different mechanisms underlie the various types of cardiomyopathies, a principal pathology is common to all and is usually at the level of the cardiac muscle. With a relatively high incidence rate in most countries, and a subsequent major health burden on both the families and governments, cardiomyopathies are gaining more attention by researchers and pharmaceutical companies as well as health government bodies. In Lebanon, there is no official data about the spectrum of the diseases in terms of their respective prevalence, clinical, or genetic profiles.


Acute and Chronic Pheochromocytoma-Induced Cardiomyopathies: Different Prognoses?: A Systematic Analytical Review.

  • Marie Batisse-Lignier‎ et al.
  • Medicine‎
  • 2015‎

Pheochromocytoma and paraganglioma (PPG) are rare and late-diagnosed catecholamine secreting tumors, which may be associated with unrecognized and/or severe cardiomyopathies. We performed a computer-assisted systematic search of the electronic Medline databases using the MESH terms "myocarditis," "myocardial infarction," "Takotsubo," "stress cardiomyopathy," "cardiogenic shock", or "dilated cardiomyopathy," and "pheochromocytoma" or "paraganglioma" from 1961 to August 2012. All detailed case reports of cardiomyopathy due to a PPG, without coronary stenosis, and revealed by acute symptoms were included and analyzed. A total of 145 cases reports were collected (49 Takotsubo Cardiomyopathies [TTC] and 96 other Catecholamine Cardiomyopathies [CC]). At initial presentation, prevalence of high blood pressure (87.7%), chest pain (49.0%), headaches (47.6%), palpitations (46.9%), sweating (39.3%), and shock (51.0%) were comparable between CC and TTC. Acute pulmonary edema (58.3% vs 38.8%, P = 0.03) was more frequent in CC. There was no difference in proportion of patients with severe left ventricular systolic dysfunction (LV Ejection Fraction [LVEF] < 30%) at initial presentation between both groups (P = 0.15). LVEF recovery before (64.9% vs 40.8%, P = 0.005) and after surgical resection (97.7% vs 73.3%, P = 0.001) was higher in the TTC group. Death occurred in 11 cases (7.6%). In multivariate analysis, only TTC was associated with a better LV recovery (0.15 [0.03-0.67], P = 0.03). Pheochromocytoma and paraganglioma can lead to different cardiomyopathies with the same brutal and life-threatening initial clinical presentation but with a different recovery rate. Diagnosis of unexplained dilated cardiomyopathy or TTC should lead clinicians to a specific search for PPG.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: