Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,941 papers

Cetuximab and biomarkers in non-small-cell lung carcinoma.

  • Nitin Patil‎ et al.
  • Biologics : targets & therapy‎
  • 2012‎

Cancer progression is a highly complex process that is driven by a constellation of deregulated signaling pathways and key molecular events. In non-small-cell lung cancer (NSCLC), as in several other cancer types, the epidermal growth factor receptor (EGFR) and its downstream signaling components represent a key axis that has been found not only to trigger cancer progression but also to support advanced disease leading to metastasis. Two major therapeutic approaches comprising monoclonal antibodies and small molecule tyrosine kinase inhibitors have so far been used to target this pathway, with a combination of positive, negative, and inconsequential results, as judged by patient survival indices. Since these drugs are expensive and not all patients derive benefits from taking them, it has become both pertinent and paramount to identify biomarkers that can predict not only beneficial response but also resistance. This review focuses on the chimeric monoclonal antibody, cetuximab, its application in the treatment of NSCLC, and the biomarkers that may guide its use in the clinical setting. A special emphasis is placed on the EGFR, including its structural and mechanistic attributes.


Crizotinib in the treatment of non-small-cell lung carcinoma.

  • Adam Płużański‎ et al.
  • Contemporary oncology (Poznan, Poland)‎
  • 2012‎

Recent studies have demonstrated the benefit of EGFR tyrosine kinase inhibitors in the treatment of advanced non-small-cell lung cancer (NSCLC). The role of activation of the anaplastic lymphoma kinase (ALK) pathway and the presence of the fusion gene EML4-ALK are new molecular targets in studies into the pathogenesis and treatment of NSCLC. ALK gene rearrangement is observed in 3-5% of NSCLC patients. Crizotinib is an oral inhibitor of ALK kinase activity, approved for the treatment of NSCLC patients with ALK gene rearrangement. Crizotinib treatment has resulted in a progression-free survival of 7-10 months with 50-60% objective response rate. The present paper gives an overview of literature reports on the role of crizotinib in the treatment of NSCLC patients harbouring a molecular defect in the ALK gene. Molecular diagnosis of ALK-associated aberrations, results of clinical trials of different phases assessing the efficacy and safety profile of crizotinib are also discussed. Attention is given to the likely causes of drug resistance and management strategies in patients with treatment failure.


Clinical potential of necitumumab in non-small cell lung carcinoma.

  • Carlo Genova‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Despite significant progress, new therapeutic approaches for advanced non-small cell lung cancer (NSCLC) are highly needed, particularly for the treatment of patients with squamous cell carcinoma. The epidermal growth factor receptor (EGFR) is often overexpressed in NSCLC and represents a relevant target for specific treatments. Although EGFR mutations are more frequent in non-squamous histology, the receptor itself is more often overexpressed in squamous NSCLC. Necitumumab is a human monoclonal antibody that is able to inhibit the EGFR pathway and cause antibody-dependent cell cytotoxicity. This drug has been studied in combination with first-line chemotherapy for advanced NSCLC in two Phase III trials, and a significant survival benefit was reported in squamous NSCLC (SQUIRE trial); by contrast, necitumumab did not prove itself beneficial in non-squamous histotype (INSPIRE trial). On the basis of the SQUIRE results, necitumumab was approved in combination with cisplatin and gemcitabine as a first-line treatment for advanced squamous NSCLC, both in the US and Europe, where its availability is limited to patients with EGFR-expressing tumors. The aim of this review is to describe the tolerability and the efficacy of necitumumab by searching the available published data and define its potential role in the current landscape of NSCLC treatment.


Chlorin e6 - polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts.

  • William W L Chin‎ et al.
  • BMC pharmacology‎
  • 2007‎

Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 - polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts.


USP51 promotes non-small cell lung carcinoma cell stemness by deubiquitinating TWIST1.

  • Jin Chen‎ et al.
  • Journal of translational medicine‎
  • 2023‎

USP51 is a deubiquitinase (DUB), that is involved in diverse cellular processes. Accumulating evidence has demonstrated that USP51 contributes to cancer development. However, its impact on non-small cell lung carcinoma (NSCLC) cell malignancy is largely unknown.


MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines.

  • M Crawford‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.


HER3 expression and MEK activation in non-small-cell lung carcinoma.

  • Thubeena Manickavasagar‎ et al.
  • Lung cancer management‎
  • 2021‎

We explore HER3 expression in lung adenocarcinoma (adeno-NSCLC) and identify potential mechanisms of HER3 expression.


STYK1/NOK correlates with ferroptosis in non-small cell lung carcinoma.

  • Yuanyang Lai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Serine Threonine Tyrosine Kinase 1 (STYK1) presents oncogenic properties in many studies, and emerging evidence suggests that ferroptosis serve as a novel tumor suppressor. However, the interplay between STYK1 and ferroptosis in NSCLC remains unclear. Our aim is to illustrate the expression of ferroptotic regulator Glutathione peroxidase 4 (GPX4) in NSCLC and the relationship between STYK1 and ferroptosis. Herein, results based on ONCOMINE database, clinical specimens, and cellular manipulation revealed GPX4 was upregulated in NSCLC tissues and cell lines, and high GPX4 expression predicted worse prognosis. High STYK1 expression predicted worse OS and was related to high GPX4 in NSCLC tissues; overexpression of STYK1 in lung cancer cell line SW900 upregulated the expression of GPX4, promoted proliferation, and attenuated diverse mitochondrial abnormalities specific to ferroptosis, whereas knockdown of GPX4 exacerbated such attenuations without affecting cell proliferation. Taken together, ferroptosis as an anti-tumor factor is inhibited in NSCLC, and targeting ferroptosis could be a novel therapeutic strategy for the management of NSCLC; furthermore, regulating ferroptosis could be another cancerous mechanism of STYK1.


Personalized medicine and treatment approaches in non-small-cell lung carcinoma.

  • Joseph Vadakara‎ et al.
  • Pharmacogenomics and personalized medicine‎
  • 2012‎

Chemotherapy has been the traditional backbone for the management of metastatic lung cancer. Multiple trials have shown the benefits of treatment with platinum doublets in lung cancer. This "one treatment fits all" approach was further refined by the introduction of targeted agents and discovery of subpopulations of patients who benefited from treatment with these agents. It has also become evident that certain histologic subtypes of non-small-cell lung cancer respond better to one cytotoxic chemotherapy versus others. This has led to the concept of using histology to guide therapy. With the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and the discovery of activating mutations in the EGFR gene, further personalization of treatment for subgroups of patients has become a reality. More recently, the presence of a fusion gene, echinoderm microtubule-associated protein-like 4 - anaplastic lymphoma kinase (EML4-ALK), was identified as the driver mutation in yet another subgroup of patients, and subsequent studies have led to approval of crizotinib in this group of patients. In this article, efforts in personalizing delivery of care based on the histological subtypes of lung cancer and the role of K-RAS and EGFR mutations, EML4/ALK translocation, and ERCC1 (excision repair cross-complementing 1) and EGFR expression in choosing appropriate treatments for patients with advanced lung cancer are discussed. This article also reviews the problem of resistance to EGFR tyrosine kinase inhibitors and the ongoing trials that target novel pathways and mechanisms that are implicated in resistance.


Clinicopathological Features of Non-Small Cell Lung Carcinoma with BRAF Mutation.

  • Andrea Ambrosini-Spaltro‎ et al.
  • Current oncology (Toronto, Ont.)‎
  • 2023‎

(1) Background: BRAF mutations affect 4-5% of lung adenocarcinomas. This study aimed to analyze the clinicopathological features of lung carcinomas with BRAF mutations, focusing on V600E vs. non-V600E and the presence of co-mutations. (2) Methods: All BRAF-mutated lung carcinomas were retrieved from a molecular diagnostic unit (the reference unit for four different hospitals). The samples were analyzed using next-generation sequencing. Statistical analyses included log-rank tests for overall survival (OS) and progression-free survival (PFS). (3) Results: In total, 60 BRAF-mutated lung carcinomas were retrieved: 24 (40.0%) with V600E and 36 (60.0%) with non-V600E mutations, and 21 (35.0%) with other co-mutations and 39 (65.0%) with only BRAF mutations. Survival data were available for 54/60 (90.0%) cases. Targeted therapy was documented in 11 cases. Patients with V600E mutations exhibited a better prognosis than patients with non-V600E mutations (p = 0.008 for OS, p = 0.018 for PFS); this was confirmed in PFS (p = 0.036) when considering only patients who received no targeted therapy. Patients with co-mutations displayed no prognostic difference compared to patients carrying only BRAF mutations (p = 0.590 for OS, p = 0.938 for PFS). (4) Conclusions: BRAF-mutated lung carcinomas with V600E (40.0%) had a better prognosis than those without V600E. Concomitant co-mutations (35.0%) did not affect the prognosis.


Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma.

  • Fei Feng‎ et al.
  • Cancer biology & therapy‎
  • 2017‎

Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to gemcitabine. Metuzumab/gemcitabine combination treatment may be a potentially useful therapeutic regimen for NSCLC patients.


Steroid sulphatase and oestrogen sulphotransferase in human non-small-cell lung carcinoma.

  • S Iida‎ et al.
  • British journal of cancer‎
  • 2013‎

Steroid sulphatase (STS) is one of the steroid-metabolising enzymes involved in desulphating inactive steroid sulphates and oestrogen sulphotransferase (EST) sulphates active oestrogen. The roles of both STS and EST have not been examined in oestrogen-dependent non-small-cell lung cancer (NSCLC).


Extensive serum biomarker analysis in patients with non-small-cell lung carcinoma.

  • Donghao Cai‎ et al.
  • Cytokine‎
  • 2020‎

Lung cancer is a common malignant disease, nearly 2.09 million new patients occurred last year. Approximately 85% of the patients are classified as non-small-cell lung cancer (NSCLC). It is therefore important to identify new diagnostic and prognostic biomarkers for the early detection of this disease. The presented study identifies biomarkers in the serum of NSCLC patients. The expression of 274 cytokines was measured by a novel antibody array methodology and ELISA was applied to validate the array results. The levels of MIP-1 α, IL-8, MIP-1 β, Resistin, GDF-15, HGF, CA125, FLRG, VCAM-1, DKK-3, sTNF-R1, CTACK, Acrp30, CXCL-16 and LYVE-1 were significantly higher in serum from NSCLC patients, while the level of TIMP-2 and IGFBP-6 were lower. More importantly, the validation supported the result of the antibody array. The result of the antibody array indicates that these cytokines might be novel auxiliary biomarkers in the diagnosis and prognosis of NSCLC.


Prognostic significance of PD-L1 in advanced non-small cell lung carcinoma.

  • Yanjie Zhao‎ et al.
  • Medicine‎
  • 2020‎

This study aimed to investigate the prognostic value of PD-L1 in Chinese patients with non-small cell lung carcinoma (NSCLC).In this retrospective study, 97 patients with NSCLC were consecutively recruited. The expression profiling of PD-1, PD-L1, p53 and Ki-67 was detected by immunohistochemistry. Median survival time was estimated by Kaplan-Meier survival curve with log-rank test. Risk factors were evaluated by Cox Proportional Hazards regression models.The median tumor size was larger (3.5 cm) among patients with positive PD-L1 expression, compared to those with negative expression (2.0 cm; P < .01). Compared to those with negative PD-L1 expression, patients with positive PD-L1 expression had significantly higher rates of nerve invasion (26.3% vs 5.0%; P < .01), blood vessel invasion (47.4% vs 20.0%; P < .01) and lymph node metastasis (64.9% vs 27.5%; P < .01), more advanced tumor stage (P < .01) and Ki-67 index (P < .01). PD-L1 expression status was not significantly associated with disease-free (DFS) or overall survival (OS). However, for patients with advanced disease, PD-L1 positive expression was related to worse outcome (HR: 4.13; 95% CI: 1.06-16.12).Positive PD-L1 expression is associated with more aggressive pathological features and poorer prognosis in advanced stage NSCLC.


Aaptamine attenuates the proliferation and progression of non-small cell lung carcinoma.

  • Kaikai Gong‎ et al.
  • Pharmaceutical biology‎
  • 2020‎

Aaptamine is a potent ocean-derived non-traditional drug candidate against human cancers. However, the underlying molecular mechanisms governing aaptamine-mediated repression of lung cancer cells remain largely undefined.


Loss of UHRF2 Is Associated With Non-small Cell Lung Carcinoma Progression.

  • Chun Jin‎ et al.
  • Journal of Cancer‎
  • 2018‎

Recent evidence indicated ubiquitin like with PHD and ring finger domains 2 (UHRF2) was involved in various human diseases, especially in cancer, however, its roles in cancer are still in dispute. Here, we found UHRF2 expression was decreased in lung cancer tissues compared with adjacent normal tissues by referring to the Oncomine Database, which was further identified by immunoblotting and quantitative real-time polymerase chain reaction assays. Secondly, we found knockdown of UHRF2 in A549 and 95-D cell lines enhanced the capability of proliferation, invasion and migration, while forced UHRF2 expression inhibited NSCLC cells proliferation,invasion and migration. Mechanistically, dot-blot and western blot assays indicated that the level of UHRF2 was positively correlated with 5-hmC level by affecting ten-eleven translocation 2 (TET2) expression. Clinically, UHRF2 downregulation is significantly correlated with a malignant phenotype, including larger tumor size and poor differentiation. Moreover, UHRF2 downregulated correlates with shorter overall survival(OS). Conclusion: Our findings indicate that UHRF2 is a tumor suppressor in NSCLC by influence TET2 expression and serve as a potential therapeutic target in NSCLC.


Comparative proteogenomics profiling of non-small and small lung carcinoma cell lines using mass spectrometry.

  • Jingyu Wu‎ et al.
  • PeerJ‎
  • 2020‎

Evidences indicated that non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) might originate from the same cell type, which however ended up to be two different subtypes of lung carcinoma, requiring different therapeutic regimens. We aimed to identify the differences between these two subtypes of lung cancer by using integrated proteome and genome approaches.


Differential sensitivity to apoptosome apparatus activation in non-small cell lung carcinoma and the lung.

  • Erika Moravcikova‎ et al.
  • International journal of oncology‎
  • 2014‎

The intrinsic apoptosis pathway represents an important mechanism of stress-induced death of cancer cells. To gain insight into the functional status of the apoptosome apparatus in non-small cell lung carcinoma (NSCLC), we studied its sensitivity to activation, the assembly of apoptosome complexes and stability of their precursors, and the importance of X-linked inhibitor of apoptosis (XIAP) in the regulation of apoptosome activity, using cell-free cytosols from NSCLC cell lines and NSCLC tumours and lungs from 62 surgically treated patients. Treatment of cytosol samples with cytochrome c (cyt-c) and dATP induced proteolytic processing of procaspase-9 to caspase-9, which was followed by procaspase-3 processing to caspase-3, and by generation of caspase-3-like activity in 5 of 7 studied NSCLC cell lines. Further analysis demonstrated formation of high-Mr Apaf-1 complexes associated with cleaved caspase-9 in the (cyt-c + dATP)-responsive COLO-699 and CALU-1 cells. By contrast, in A549 cells, Apaf-1 and procaspase-9 co-eluted in the high-Mr fractions, indicating formation of an apoptosome complex unable of procaspase-9 processing. Thermal pre-treatment of cell-free cytosols in the absence of exogenous cyt-c and dATP lead to formation of Apaf-1 aggregates, unable to recruit and activate procaspase-9 in the presence of cyt-c and dATP, and to generate caspase‑3‑like activity. Further studies showed that the treatment with cyt-c and dATP induced a substantially higher increase of caspase-3-like activity in cytosol samples from NSCLC tumours compared to matched lungs. Tumour histology, grade and stage had no significant impact on the endogenous and the (cyt-c + dATP)-induced caspase-3-like activity. Upon addition into the cytosol, the XIAP-neutralizing peptides AVPIAQK and ATPFQEG only moderately heightened the (cyt-c + dATP)-induced caspase‑3‑like activity in some NSCLC tumours. Taken together, the present study provides evidence that the apoptosome apparatus is functional in the majority of NSCLCs and that its sensitivity to the (cyt-c + dATP)-mediated activation is often enhanced in NSCLCs compared to lungs. They also indicate that XIAP does not frequently and effectively suppress the activity of apoptosome apparatus in NSCLCs.


Long non-coding RNA dysregulation is a frequent event in non-small cell lung carcinoma pathogenesis.

  • Amelia Acha-Sagredo‎ et al.
  • British journal of cancer‎
  • 2020‎

Long non-coding RNAs compose an important level of epigenetic regulation in normal physiology and disease. Despite the plethora of publications of lncRNAs in human cancer, the landscape is still unclear.


Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma.

  • Lin Ma‎ et al.
  • Lung cancer management‎
  • 2019‎

To determine the role of claudin-3 in cancer stemness in nonsquamous non-small-cell lung carcinoma (NSCLC).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: