Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion.

  • Christian Rapp‎ et al.
  • Applied and environmental microbiology‎
  • 2021‎

Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.


PULDB: the expanded database of Polysaccharide Utilization Loci.

  • Nicolas Terrapon‎ et al.
  • Nucleic acids research‎
  • 2018‎

The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present 'CAZyme cluster' predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: