Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1.

  • Metehan Cifdaloz‎ et al.
  • Nature communications‎
  • 2017‎

Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.


RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma.

  • Reniqua P House‎ et al.
  • Oncotarget‎
  • 2015‎

The RNA binding protein CELF1 (also known as CUGBP1) is emerging as a critical regulator of cancer cell proliferation and apoptosis. Here, to provide a global prospective of CELF1 regulation of oral squamous cell carcinoma, we performed RNA-sequencing in oral cancer cells and CELF1 overexpression analysis in non-malignant human oral keratinocytes. Our approaches identified 1283 mRNAs differentially regulated as a function of CELF1 expression and more importantly CELF1 promoted alternative splicing of several target pre-mRNAs, which are known to be involved in various cancer biological processes. Overexpression of CELF1 in non-malignant human oral keratinocytes protected cells against oxidative damage and altered gene expression patterns. Finally, we provide evidence that reduction of CELF1 protein using a xenograft tumorigenesis mouse model decreased tumor growth. Altogether, these data provided a comprehensive view of the CELF1 mRNA regulatory network in oral cancer and suggests that CELF1 and/or its target mRNAs are viable candidates for therapeutic intervention.


Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells.

  • Sudha Talwar‎ et al.
  • RNA biology‎
  • 2013‎

CELF1 RNA-binding protein, otherwise called CUGBP1, associates and coordinates the degradation of GU-rich element (GRE) containing mRNA's encoding factors important for cell growth, migration and apoptosis. Although many substrates of CELF1 have been identified, the biological significance of CELF1-mediated mRNA decay remains unclear. As the processes modulated by CELF1 are frequently disrupted in cancer, we investigated the expression and role of CELF1 in oral squamous cancer cells (OSCCs). We determined that CELF1 is reproducibly overexpressed in OSCC tissues and cell lines. Moreover, depletion of CELF1 reduced proliferation and increased apoptosis in OSCCs, but had negligible effect in non-transformed cells. We found that CELF1 associates directly with the 3'UTR of mRNAs encoding the pro-apoptotic factors BAD, BAX and JunD and mediates their rapid decay. Specifically, 3'UTR fragment analysis of JunD revealed that the GRE region is critical for binding with CELF1 and expression of JunD in oral cancer cells. In addition, silencing of CELF1 rendered BAD, BAX and JunD mRNAs stable and increased their protein expression in oral cancer cells. Taken together, these results support a critical role for CELF1 in modulating apoptosis and implicate this RNA-binding protein as a cancer marker and potential therapeutic target.


The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans.

  • Matthew E Ochs‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Neuroblast migration is a critical aspect of nervous system development (e.g, neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.


The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts.

  • Joseph Russo‎ et al.
  • PloS one‎
  • 2017‎

We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion.


Inactivation of the Celf1 gene that encodes an RNA-binding protein delays the first wave of spermatogenesis in mice.

  • Marie Cibois‎ et al.
  • PloS one‎
  • 2012‎

The first wave of spermatogenesis in mammals is characterized by a sequential and synchronous appearance of germ cells in the prepubertal testis. Post-transcriptional controls of gene expression play important roles in this process but the molecular actors that underlie them are poorly known.


The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development.

  • Archana D Siddam‎ et al.
  • PLoS genetics‎
  • 2018‎

Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.


Altered CELF1 binding to target transcripts in malignant T cells.

  • Paul R Bohjanen‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

The RNA-binding protein, CELF1, binds to a regulatory sequence known as the GU-rich element (GRE) and controls a network of mRNA transcripts that regulate cellular activation, proliferation, and apoptosis. We performed immunoprecipitation using an anti-CELF1 antibody, followed by identification of copurified transcripts using microarrays. We found that CELF1 is bound to a distinct set of target transcripts in the H9 and Jurkat malignant T-cell lines, compared with primary human T cells. CELF1 was not phosphorylated in resting normal T cells, but in malignant T cells, phosphorylation of CELF1 correlated with its inability to bind to GRE-containing mRNAs that served as CELF1 targets in normal T cells. Lack of binding by CELF1 to these mRNAs in malignant T cells correlated with stabilization and increased expression of these transcripts. Several of these GRE-containing transcripts that encode regulators of cell growth were also stabilized and up-regulated in primary tumor cells from patients with T-cell acute lymphoblastic leukemia. Interestingly, transcripts encoding numerous suppressors of cell proliferation that served as targets of CELF1 in malignant T cells, but not normal T cells, exhibited accelerated degradation and reduced expression in malignant compared with normal T cells, consistent with the known function of CELF1 to mediate degradation of bound transcripts. Overall, CELF1 dysfunction in malignant T cells led to the up-regulation of a subset of GRE-containing transcripts that promote cell growth and down-regulation of another subset that suppress cell growth, producing a net effect that would drive a malignant phenotype.


Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation.

  • Daniel Beisang‎ et al.
  • Gene‎
  • 2014‎

Alternative polyadenylation (APA) is an evolutionarily conserved mechanism for regulating gene expression. Transcript 3' end shortening through changes in polyadenylation site usage occurs following T cell activation, but the consequences of APA on gene expression are poorly understood. We previously showed that GU-rich elements (GREs) found in the 3' untranslated regions of select transcripts mediate rapid mRNA decay by recruiting the protein CELF1/CUGBP1. Using a global RNA sequencing approach, we found that a network of CELF1 target transcripts involved in cell division underwent preferential 3' end shortening via APA following T cell activation, resulting in decreased inclusion of CELF1 binding sites and increased transcript expression. We present a model whereby CELF1 regulates APA site selection following T cell activation through reversible binding to nearby GRE sequences. These findings provide insight into the role of APA in controlling cellular proliferation during biological processes such as development, oncogenesis and T cell activation.


CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT.

  • Arindam Chaudhury‎ et al.
  • Nature communications‎
  • 2016‎

The importance of translational regulation in tumour biology is increasingly appreciated. Here, we leverage polyribosomal profiling to prospectively define translational regulatory programs underlying epithelial-to-mesenchymal transition (EMT) in breast epithelial cells. We identify a group of ten translationally regulated drivers of EMT sharing a common GU-rich cis-element within the 3'-untranslated region (3'-UTR) of their mRNA. These cis-elements, necessary for the regulatory activity imparted by these 3'-UTRs, are directly bound by the CELF1 protein, which itself is regulated post-translationally during the EMT program. CELF1 is necessary and sufficient for both mesenchymal transition and metastatic colonization, and CELF1 protein, but not mRNA, is significantly overexpressed in human breast cancer tissues. Our data present an 11-component genetic pathway, invisible to transcriptional profiling approaches, in which the CELF1 protein functions as a central node controlling translational activation of genes driving EMT and ultimately tumour progression.


CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

  • Heng Xia‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2017‎

The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process.


Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1.

  • Jimena Giudice‎ et al.
  • Scientific reports‎
  • 2016‎

The RNA binding protein Celf1 regulates alternative splicing in the nucleus and mRNA stability and translation in the cytoplasm. Celf1 is strongly down-regulated during mouse postnatal heart development. Its re-induction in adults induced severe heart failure and reversion to fetal splicing and gene expression patterns. However, the impact of Celf1 depletion on cardiac transcriptional and posttranscriptional dynamics in neonates has not been addressed. We found that homozygous Celf1 knock-out neonates exhibited cardiac dysfunction not observed in older homozygous animals, although homozygous mice are smaller than wild type littermates throughout development. RNA-sequencing of mRNA from homozygous neonatal hearts identified a network of cell cycle genes significantly up-regulated and down-regulation of ion transport and circadian genes. Cell cycle genes are enriched for Celf1 binding sites supporting a regulatory role in mRNA stability of these transcripts. We also identified a cardiac splicing network coordinated by Celf1 depletion. Target events contain multiple Celf1 binding sites and enrichment in GU-rich motifs. Identification of direct Celf1 targets will advance our knowledge in the mechanisms behind developmental networks regulated by Celf1 and diseases where Celf1 is mis-regulated.


Identification of CELF1 RNA targets by CLIP-seq in human HeLa cells.

  • Olivier Le Tonquèze‎ et al.
  • Genomics data‎
  • 2016‎

The specific interactions between RNA-binding proteins and their target RNAs are an essential level to control gene expression. By combining ultra-violet cross-linking and immunoprecipitation (CLIP) and massive SoliD sequencing we identified the RNAs bound by the RNA-binding protein CELF1, in human HeLa cells. The CELF1 binding sites deduced from the sequence data allow characterizing specific features of CELF1-RNA association. We present therefore the first map of CELF1 binding sites in human cells.


Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal.

  • Lan Liu‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3'-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3'-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.


CELF1 is Up-Regulated in Glioma and Promotes Glioma Cell Proliferation by Suppression of CDKN1B.

  • Liang Xia‎ et al.
  • International journal of biological sciences‎
  • 2015‎

As a member of the CELF family, CELF1 (CUG-binding protein 1, CUGBP1) is involved in cardiac and embryonic development, skeletal muscle differentiation and mammary epithelial cell proliferation. CELF1 is also observed in many kinds of cancer and may play a great role in tumorigenesis and deterioration. However, the expression and mechanism of its function in human glioma remain unclear.


Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression.

  • Arkadiusz Kajdasz‎ et al.
  • Scientific reports‎
  • 2022‎

CUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5' and 3' untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5'UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5'UTRs and 3'UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5' and 3' UTR isoforms within CELF1 mRNA.


Small molecule targeting CELF1 RNA-binding activity to control HSC activation and liver fibrosis.

  • Yang Tan‎ et al.
  • Nucleic acids research‎
  • 2022‎

CUGBP Elav-like family member 1 (CELF1), an RNA-binding protein (RBP), plays important roles in the pathogenesis of diseases such as myotonic dystrophy, liver fibrosis and cancers. However, targeting CELF1 is still a challenge, as RBPs are considered largely undruggable. Here, we discovered that compound 27 disrupted CELF1-RNA binding via structure-based virtual screening and biochemical assays. Compound 27 binds directly to CELF1 and competes with RNA for binding to CELF1. Compound 27 promotes IFN-γ secretion and suppresses TGF-β1-induced hepatic stellate cell (HSC) activation by inhibiting CELF1-mediated IFN-γ mRNA decay. In vivo, compound 27 attenuates CCl4-induced murine liver fibrosis. Furthermore, the structure-activity relationship analysis was performed and compound 841, a derivative of compound 27, was identified as a selective CELF1 inhibitor. In conclusion, targeting CELF1 RNA-binding activity with small molecules was achieved, which provides a novel strategy for treating liver fibrosis and other CELF1-mediated diseases.


Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells.

  • Li-Na Wu‎ et al.
  • Cancer cell international‎
  • 2013‎

Lung cancer is the leading cause of cancer-related death in the world, with metastasis as the main reason for the mortality. CELF1 is an RNA-binding protein controlling the post-transcriptional regulation of genes related to cell survival. As yet, there is little knowledge of CELF1 expression and biological function in lung cancer. This study investigated the expression levels of CELF1 in lung cancer tissues and the biological function of CELF1 in lung cancer cells.


High-Throughput Transcriptomics of Celf1 Conditional Knockout Lens Identifies Downstream Networks Linked to Cataract Pathology.

  • Archana D Siddam‎ et al.
  • Cells‎
  • 2023‎

Defects in the development of the ocular lens can cause congenital cataracts. To understand the various etiologies of congenital cataracts, it is important to characterize the genes linked to this developmental defect and to define their downstream pathways that are relevant to lens biology and pathology. Deficiency or alteration of several RNA-binding proteins, including the conserved RBP Celf1 (CUGBP Elav-like family member 1), has been described to cause lens defects and early onset cataracts in animal models and/or humans. Celf1 is involved in various aspects of post-transcriptional gene expression control, including regulation of mRNA stability/decay, alternative splicing and translation. Celf1 germline knockout mice and lens conditional knockout (Celf1cKO) mice develop fully penetrant cataracts in early postnatal stages. To define the genome-level changes in RNA transcripts that result from Celf1 deficiency, we performed high-throughput RNA-sequencing of Celf1cKO mouse lenses at postnatal day (P) 0. Celf1cKO lenses exhibit 987 differentially expressed genes (DEGs) at cut-offs of >1.0 log2 counts per million (CPM), ≥±0.58 log2 fold-change and <0.05 false discovery rate (FDR). Of these, 327 RNAs were reduced while 660 were elevated in Celf1cKO lenses. The DEGs were subjected to various downstream analyses including iSyTE lens enriched-expression, presence in Cat-map, and gene ontology (GO) and representation of regulatory pathways. Further, a comparative analysis was done with previously generated microarray datasets on Celf1cKO lenses P0 and P6. Together, these analyses validated and prioritized several key genes mis-expressed in Celf1cKO lenses that are relevant to lens biology, including known cataract-linked genes (e.g., Cryab, Cryba2, Cryba4, Crybb1, Crybb2, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf, Dnase2b, Bfsp1, Gja3, Pxdn, Sparc, Tdrd7, etc.) as well as novel candidates (e.g., Ell2 and Prdm16). Together, these data have defined the alterations in lens transcriptome caused by Celf1 deficiency, in turn uncovering downstream genes and pathways (e.g., structural constituents of eye lenses, lens fiber cell differentiation, etc.) associated with lens development and early-onset cataracts.


Supplementary choline attenuates olive oil lipid emulsion-induced enterocyte apoptosis through suppression of CELF1/AIF pathway.

  • Jun-Kai Yan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Enterocyte apoptosis induced by lipid emulsions is a key cause of intestinal atrophy under total parenteral nutrition (TPN) support, and our previous work demonstrated that olive oil lipid emulsion (OOLE) could induce enterocyte apoptosis via CUGBP, Elav-like family member 1 (CELF1)/ apoptosis-inducing factor (AIF) pathway. As TPN-associated complications are partially related to choline deficiency, we aimed to address whether choline supplementation could attenuate OOLE-induced enterocyte apoptosis. Herein we present evidence that supplementary choline exhibits protective effect against OOLE-induced enterocyte apoptosis both in vivo and in vitro. In a rat model of TPN, substantial reduction in apoptotic rate along with decreased expression of CELF1 was observed when supplementary choline was added to OOLE. In cultured Caco-2 cells, supplementary choline attenuated OOLE-induced apoptosis and mitochondria dysfunction by suppressing CELF1/AIF pathway. Compared to OOLE alone, the expression of CELF1 and AIF was significantly decreased by supplementary choline, whereas the expression of Bcl-2 was evidently increased. No obvious alterations were observed in Bax expression and caspase-3 activation. Mechanistically, supplementary choline repressed the expression of CELF1 by increasing the recruitment of CELF1 mRNA to processing bodies, thus resulting in suppression of its protein translation. Taken together, our data suggest that supplementary choline exhibits effective protection against OOLE-induced enterocyte apoptosis, and thus, it has the potential to be used for the prevention and treatment of TPN-induced intestinal atrophy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: