Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta).

  • Jin Yu‎ et al.
  • GigaByte (Hong Kong, China)‎
  • 2020‎

Mosses comprise one of three lineages forming a sister group to extant vascular plants. Having emerged from an early split in the diversification of embryophytes, mosses may offer complementary insights into the evolution of traits following the transition to, and colonization of, land. Here, we report the draft nuclear genome of Fontinalis antipyretica (Fontinalaceae, Hypnales), a charismatic aquatic moss that is widespread in temperate regions of the Northern Hemisphere. We sequenced and de novo-assembled its genome using the 10X Genomics method. The genome comprises 385.2 Mbp, with a scaffold N50 of 45.8 Kbp. The assembly captured 87.2% of the 430 genes in the BUSCO Viridiplantae odb10 dataset. The newly generated F. antipyretica genome is the third moss genome, and the second seedless aquatic plant genome, to be sequenced and assembled to date.


Codonoblepharonteae, a New Major Lineage among Orthotrichoideae (Orthotrichaceae, Bryophyta).

  • Pablo Aguado-Ramsay‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Orthotrichoideae aggregates epiphytic mosses widespread throughout temperate regions and high tropical mountains of the world. Recently, important advances have been made in elucidating its phylogenetic relationships and evolutionary patterns. Fourteen genera are currently recognized within the subfamily, which are spread over two main tribes: Orthotricheae, comprising Orthotrichinae and Lewinskyinae, and Zygodonteae. Despite the progress, some groups have received little attention, as is the case of genus Codonoblepharon. Recent studies have suggested that this genus may represent a separate lineage from Zygodonteae, in which it traditionally has been considered. Although, none of the studies were conclusive as they did not include a representative sampling of the Codonoblepharon species. This work aims to evaluate the taxonomic position of Codonoblepharon and its phylogenetic relationships within Orthotrichoideae. For this purpose, we present an updated phylogenetic tree based on four different loci, one belonging to the nuclear genome (ITS2) and the rest to the plastid genome (rps4, trnG and trnL-F). The phylogenetic reconstruction recovers all samples of Codonoblepharon in a monophyletic group, sister to the rest of the subfamily, constituting a lineage independent of the two currently recognized tribes. For this reason, we propose the new tribe Codonoblepharonteae to accommodate Codonoblepharon.


The complete plastome of Polytrichum commune Hedw. (Polytrichaceae, Bryophyta).

  • Xin-Jie Jin‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Polytrichum commune, one of hair-cap mosses, is the type species of the genus Polytrichum Hedw. (Polytrichaceae). Here we present its complete plastome. The plastome of P. commune is successfully assembled from raw reads sequenced by HiSeq X ten system. Its total length is 126,323 bp consisting of four regions: large single copy (LSC) region (88,070 bp), small single copy (SSC) region (16,717 bp), and inverted repeats (IRs; 9,680 bp per each). It contains 128 genes (84 coding genes, eight rRNAs, and 36 tRNAs); nine genes (four rRNAs and five tRNAs) are duplicated in IR regions. The overall GC content is 28.9% and in the LSC, SSC and IR regions is 26.1%, 25.1%, and 45.5%, respectively. This plastome is an important sequence resource for further studies on the class Polytrichopsida.


The complete plastome of Andreaea rupestris Hedw. (Andreaeaceae, Bryophyta).

  • Xin-Jie Jin‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Andreaea rupestris Hedw., one of the lantern mosses, is the lectotype of the genus Andreaea Hedw. (Andreaeaceae). Here we present its complete plastome. The plastome of A. rupestris is successfully assembled from raw reads sequenced by HiSeq X ten system. Its total length is 135,214 bp consisting of four regions: large single copy (LSC) region (92,780 bp), small single copy (SSC) region (21,102 bp), and two inverted repeat regions (IRs; 10,666 bp per each). It contains 134 genes (88 coding genes, 8 rRNAs, and 38 tRNAs). The overall GC content is 30.3% and in the LSC, SSC, and IR regions are 27.5%, 26.5%, and 46.2%, respectively. The present data will be an important sequence resource for further studies on the important early diverging lineage of mosses.


A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data.

  • Benjamin Merget‎ et al.
  • BMC research notes‎
  • 2010‎

Hypnales comprise over 50% of all pleurocarpous mosses. They provide a young radiation complicating phylogenetic analyses. To resolve the hypnalean phylogeny, it is necessary to use a phylogenetic marker providing highly variable features to resolve species on the one hand and conserved features enabling a backbone analysis on the other. Therefore we used highly variable internal transcribed spacer 2 (ITS2) sequences and conserved secondary structures, as deposited with the ITS2 Database, simultaneously.


New Taxonomic Arrangement of Dicranella s.l. and Aongstroemia s.l. (Dicranidae, Bryophyta).

  • Vladimir Fedosov‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

The recent molecular phylogenetic study of the families Aongstroemiaceae and Dicranellaceae, which resolved the genera Aongstroemia and Dicranella as polyphyletic, indicated the need for changes in their circumscription and provided new morphological evidence to support the formal description of newly recognized lineages. Following up on these results, the present study adds another molecular marker, the highly informative trnK-psbA region, to a subset of previously analyzed taxa and presents molecular data from newly analyzed austral representatives of Dicranella and collections of Dicranella-like plants from North Asia. The molecular data are linked with morphological traits, particularly the leaf shape, tuber morphology, and capsule and peristome characters. Based on this multi-proxy evidence, we propose three new families (Dicranellopsidaceae, Rhizogemmaceae, and Ruficaulaceae) and six new genera (Bryopalisotia, Calcidicranella, Dicranellopsis, Protoaongstroemia, Rhizogemma, and Ruficaulis) to accommodate the described species according to the revealed phylogenetic affinities. Additionally, we amend the circumscriptions of the families Aongstroemiaceae and Dicranellaceae, as well as the genera Aongstroemia and Dicranella. In addition to the monotypic Protoaongstroemia that contains the newly described dicranelloid plant with a 2-3-layered distal leaf portion from Pacific Russia, P. sachalinensis, Dicranella thermalis is described for a D. heteromalla-like plant from the same region. Fourteen new combinations, including one new status change, are proposed.


The complete chloroplast and mitochondrial genomes of Scopelophila cataractae (Mitt.) Broth. (Pottiaceae, Bryophyta).

  • Yuya Inoue‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2022‎

The complete chloroplast and mitochondrial genome sequences of Scopelophila cataractae (Pottiaceae, Bryophyta) are determined. The chloroplast genome is 122,290 bp with 118 genes and the mitochondrial genome is 105,607 bp with 67 genes, both genomes are circular. This study showed the S. cataractae plastome contains the smallest genome size, and a functional trnP GGG gene, relative to other pottiaceous species. Phylogenetic inferences support the sister relationship of S. cataractae to all other pottiaceous accessions.


Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta).

  • Jakub Sawicki‎ et al.
  • Scientific reports‎
  • 2017‎

A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.


Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?

  • Karl Holm‎ et al.
  • BMC plant biology‎
  • 2010‎

The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens.


Ecological niche comparison and molecular phylogeny segregate the invasive moss species Campylopus introflexus (Leucobryaceae, Bryophyta) from its closest relatives.

  • Renato Gama‎ et al.
  • Ecology and evolution‎
  • 2017‎

The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross-section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re-analysis of published and newly generated plastid atpB-rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).


Insights Into the Evolutionary History of the Subfamily Orthotrichoideae (Orthotrichaceae, Bryophyta): New and Former Supra-Specific Taxa So Far Obscured by Prevailing Homoplasy.

  • Isabel Draper‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Mosses of the subfamily Orthotrichoideae represent one of the main components of the cryptogam epiphytic communities in temperate areas. During the last two decades, this taxonomical group has undergone an extensive revision that has led to its rearrangement at the generic level. However, their phylogenetic relationships and inferences on the evolutionary patterns that have driven the present diversity have little advanced. In this study, we present a dated molecular phylogenetic reconstruction at the subfamily level, including 130 samples that represent the 12 genera currently recognized within the subfamily, and the analysis of four molecular markers: ITS2, rps4, trnG, and trnL-F. We also analyze 13 morphological characters of systematic value to infer their origin and diagnostic utility within the subfamily. The phylogenetic reconstruction yields three main clades within the subfamily, two of which correspond to the tribe Zygodonteae, and one to Orthotricheae. Within Zygodonteae, the genus Zygodon results to be a polyphyletic artificial assembly, and we propose to separate a new genus named Australoria. Conversely, our results do not support the separation of Pentastichella and Pleurorthotrichum at the genus level and we therefore propose to include Pleurorthotrichum in Pentastichella. Regarding Orthotricheae, our analyses clearly allow the distinction of two subtribes: Orthotrichinae and Lewinskyinae. Within the latter, Ulota results a polyphyletic entity, and therefore we propose the segregation of a separate new genus named Atlantichella. Dating analyses allow us to conclude that the split of the tribes within Orthotrichoideae dates from the Middle Jurassic, while the diversification of Orthotrichum and Zygodon probably started during the Late Cretaceous. However, most of the extant genera of this subfamily seem to be younger, and apparently its highest diversification burst took place during the Oligocene. Finally, the analysis of the morphological traits reveals that most of the characters previously used to separate genera and here tested are homoplastic, which has hindered the taxonomical and systematic proposals for decades. However, even if there are no exclusive characters, all of the genera can be defined by the combination of a few characters.


TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history.

  • Sergey Y Morozov‎ et al.
  • PeerJ‎
  • 2018‎

Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.


Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

  • Marcela Rosato‎ et al.
  • PloS one‎
  • 2016‎

Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.


Micro-eukaryotic diversity in hypolithons from miers valley, antarctica.

  • Jarishma K Gokul‎ et al.
  • Biology‎
  • 2013‎

The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts.


The genus Lactarius s. str. (Basidiomycota, Russulales) in Togo (West Africa): phylogeny and a new species described.

  • Dao Lamèga Maba‎ et al.
  • IMA fungus‎
  • 2014‎

Lactarius s. str. represents a monophyletic group of about 40 species in tropical Africa, although the delimitation of the genus from Lactifluus is still in progress. Recent molecular phylogenetic and taxonomic revisions have led to numerous changes in names of tropical species formerly referred to Lactarius. To better circumscribe the genus Lactarius in Togo, we combined morphological data with sequence analyses and phylogeny inference of rDNA ITS sequences. Morphological and molecular data were generated from specimens sampled in various native woodlands and riverside forests; Lactarioid- and Russula sequences from public GenBank NCBI, and UNITE are included for phylogenetic analysis. The Maximum likelihood phylogeny tree inferred from aligned sequences supports the phylogenetic position of the studied samples from Togo within the subgenera Piperites, and Plinthogali. Lactarius s. str. includes about 13 species described from West Africa, of which eight were not previously known from Togo, including one new species: Lactarius subbaliophaeus identifiable by the presence of winged basidiospores, a pallisadic pileipellis with a uprapellis composed of cylindrical cells, inconspicuous pleurocystidia, and fusiform or tortuous, often tapering apex marginal cells. It can also be recognised by a transparent white latex that turns pinkish and then blackish, and a bluish reaction of the flesh context with FeSO4. These features mentioned do not match any of the morpho-anatomically most similar species, notably L. baliophaeus and L. griseogalus.


MBD3 Regulates Male Germ Cell Division and Sperm Fertility in Arabidopsis thaliana.

  • Jia Shu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

DNA methylation plays important roles through the methyl-CpG-binding domain (MBD) to realize epigenetic modifications. Thirteen AtMBD proteins have been identified from the Arabidopsis thaliana genome, but the functions of some members are unclear. AtMBD3 was found to be highly expressed in pollen and seeds and it preferably binds methylated CG, CHG, and unmethylated DNA sequences. Then, two mutant alleles at the AtMBD3 locus were obtained in order to further explore its function using CRISPR/Cas9. When compared with 92.17% mature pollen production in the wild type, significantly lower percentages of 84.31% and 78.91% were observed in the mbd3-1 and mbd3-2 mutants, respectively. About 16-21% of pollen from the mbd3 mutants suffered a collapse in reproductive transmission, whereas the other pollen was found to be normal. After pollination, about 16% and 24% of mbd3-1 and mbd3-2 mutant seeds underwent early or late abortion, respectively. Among all the late abortion seeds in mbd3-2 plants, 25% of the abnormal seeds were at the globular stage, 31.25% were at the transition stage, and 43.75% were at the heart stage. A transcriptome analysis of the seeds found 950 upregulated genes and 1128 downregulated genes between wild type and mbd3-2 mutants. Some transcriptional factors involved in embryo development were selected to be expressed, and we found significant differences between wild type and mbd3 mutants, such as WOXs, CUC1, AIB4, and RGL3. Furthermore, we found a gene that is specifically expressed in pollen, named PBL6. PBL6 was found to directly interact with AtMBD3. Our results provide insights into the function of AtMBD3 in plants, especially in sperm fertility.


The complete chloroplast genome of Rhodobryum laxelimbatum (Hampe ex Ochi) Z. Iwatsuki and T. J. Koponen.

  • Shuangling Li‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Rhodobryum laxelimbatum (Bryophyta, Bryaceae) is one of the folk medicine resources in Southwest China, which has excellent potential for application in treating cardiovascular diseases. In this study, R. laxelimbatum was sequenced by high-throughput sequencing technology. The complete chloroplast genome is 124,632 bp in length with a quadripartite structure. Two inverted repeat regions are 9837 bp, separated by a large single copy region of 86,444 bp and a small single copy region of 18,514 bp. It encodes 118 unique genes, including 82 protein-coding genes, 32 tRNA genes, and four rRNA genes. The phylogenetic tree was constructed based on the complete chloroplast genome sequences of 18 bryophytes, downloaded from GenBank and acquired in this study. The phylogenetic analysis strongly indicated that R. laxelimbatum was the sister group of the clade which consists of Mnium marginatum, Pohlia cruda and Pohlia nutans. The R. laxelimbatum chloroplast genome sequence provides new genomic resources, which will improve its research, conservation, and application in the future.


Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity.

  • Samapika Nandy‎ et al.
  • Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences‎
  • 2020‎

The amphibian, non-vascular, gametophyte-dominant, bio-indicator class, bryophytes; with their wide ranges of habitat have attained importance due to their promising medicinal attributions and therapeutic role; mostly aided by presence of aromatic bibenzyl and bisbybenzyl class of compounds. Bibenzyls are steroidal ethane derivatives, resembling the structural moiety of bioactive dihydro-stilbenoids or iso-quinoline alkaloids. These stress triggered secondary metabolites are the by-products of the flavonoid biosynthetic pathway. Different classes of bryophytes (Bryophyta, Marchantiophyta and Anthocerotophyta) possess different subtypes of bibenzyls and dimeric bisbibenzyls. Among the liverwort, hornwort and mosses, former one is mostly enriched with bibenzyl type constituents as per the extensive study conducted for phytochemical deposit. Considering macrocyclic and acyclic group of bibenzyls and bisbybenzyls, generally marchantin type compounds are reported vividly for significant biological activity that includes neuro-nephro-cardio-protection besides anti-allergic, anti-microbial, anti-apoptotic and cytotoxic activities studied on in-vitro and in-vivo models or on cell lines.


Effects of Water-Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties.

  • Maria Zych‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Mosses (Bryophyta), particularly species of the genus Sphagnum, which have been used for centuries for the treatment of skin diseases and damage, are still not explored enough in terms of their use in cosmetics. The purpose of this study was to determine the antioxidant properties of water-ethanol extracts from four selected species of the genus Sphagnum (S. girgenshonii Russow, S. magellanicum Brid., S. palustre L., and S. squarrosum Crome) and their impact on the expression of genes encoding key enzymes for the functioning of the skin. In this study, the effects of Sphagnum extracts on the expression of genes encoding tyrosinase, collagenase, elastase, hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts were determined for the first time in vitro. The extracts inhibited tyrosinase gene expression and showed antioxidant activity. The experiment showed an increase in the expression of some genes encoding collagenase (MMP1) or hyaluronidase (HYAL2, HYAL3 and HYAL4) and a decrease in the hyaluronan synthase (HAS1, HAS2 and HAS3) genes expression by the tested extracts. The obtained results suggest that using extracts from the tested Sphagnum species in anti-aging cosmetics does not seem beneficial. Further studies are needed to clarify their impact on the skin.


The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins.

  • Erika Bellini‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: