Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 72 papers

Prevention of bronchial hyperreactivity in a rat model of precapillary pulmonary hypertension.

  • Walid Habre‎ et al.
  • Respiratory research‎
  • 2011‎

The development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones.


Effect of the S-nitrosoglutathione reductase inhibitor N6022 on bronchial hyperreactivity in asthma.

  • Loretta G Que‎ et al.
  • Immunity, inflammation and disease‎
  • 2018‎

Patients with asthma demonstrate depletion of the endogenous bronchodilator GSNO and upregulation of GSNOR.


Evaluation of Effect of Taxus baccata Leaves Extract on Bronchoconstriction and Bronchial Hyperreactivity in Experimental Animals.

  • Pk Patel‎ et al.
  • Journal of young pharmacists : JYP‎
  • 2011‎

The present investigation was undertaken to evaluate the bronchodilating effect and bronchial hyperreactivity of alcoholic extract of Taxus baccata Linn. (AET) leaves in experimental animals. Bronchodilator activity of AET was studied on the histamine and acetylcholine aerosol induced bronchospasm in guinea pigs and bronchial hyperreactivity was studied on bronchoalveolar lavage fluid (BALF) in the egg albumin sensitized guinea pigs and by histopathological studies. In vitro mast cell stabilizing activity was studied using compound 48/80 as a degranulating agent. Treatment with AET (200 and 400 mg/kg, p.o., for 7 days) showed significant protection against histamine and acetylcholine aerosol induced bronchospasm in guinea pigs. Significant decrease in the total leukocyte and differential leukocyte count in the BALF of the egg albumin sensitized guinea pigs was observed by administration of AET (200 and 400 mg/kg, p.o., for 15 days). AET dose dependently protected the mast cell disruption induced by compound 48/80. These results suggest that AET not only has bronchodilating activity but also decreases bronchial hyperreactivity by decreasing the infiltration of inflammatory cells in the airway and inhibiting the release of histamine like mediators from the mast cell by stabilizing it.


Secondhand smoke exposure causes bronchial hyperreactivity via transcriptionally upregulated endothelin and 5-hydroxytryptamine 2A receptors.

  • Lei Cao‎ et al.
  • PloS one‎
  • 2012‎

Cigarette smoke exposure is strongly associated with airway hyperreactivity (AHR) which is the main characteristic seen in asthma. The intracellular MAPK signaling pathways are suggested to be associated with the airway damage to the AHR. In the present study, we hypothesize that secondhand cigarette smoke (SHS) exposure upregulates the bronchial contractile receptors via activation of the Raf/ERK/MAPK pathway.


Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice.

  • T Akimoto‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Signal transducers and activators of transcription 6 (STAT6) is essential for interleukin 4-mediated responses, including class switching to IgE and induction of type 2 T helper cells. To investigate the role of STAT6 in allergic asthma in vivo, we developed a murine model of allergen-induced airway inflammation. Repeated exposure of actively immunized C57BL/6 mice to ovalbumin (OVA) aerosol increased the level of serum IgE, the number of eosinophils in bronchoalveolar lavage (BAL) fluid, and airway reactivity. Histological analysis revealed peribronchial inflammation with pulmonary eosinophilia in OVA-treated mice. In STAT6-deficient (STAT6-/-) C57BL/6 mice treated in the same fashion, there were no eosinophilia in BAL and significantly less peribronchial inflammation than in wild-type mice. Moreover STAT6-/- mice had much less airway reactivity than wild-type mice. These findings suggest that STAT6 plays a crucial role in the pathogenesis of allergen-induced airway inflammation.


Prevention of hyperoxia-induced bronchial hyperreactivity by sildenafil and vasoactive intestinal peptide: impact of preserved lung function and structure.

  • Dorottya Czövek‎ et al.
  • Respiratory research‎
  • 2014‎

Hyperoxia exposure leads to the development of lung injury and bronchial hyperreactivity (BHR) via involvement of nitric oxide (NO) pathway. We aimed at characterizing whether the stimulation of the NO pathway by sildenafil or vasoactive intestinal peptide (VIP) is able to prevent the hyperoxia-induced development of BHR. The respective roles of the preserved lung volume and alveolar architecture, the anti-inflammatory and anti-apoptotic potentials of these treatments in the diminished lung responsiveness were also characterized.


Association of childhood croup and increased incidence of airway hyperreactivity in adulthood.

  • Mohammadreza Modaresi‎ et al.
  • Journal of education and health promotion‎
  • 2018‎

Some evidence suggests that childhood croup could be associated with increased incidence of adulthood bronchial reactivity, but its significance is uncertain. The aim of the present study was to evaluate the long-term outcome of early life croup.


Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization.

  • Antonietta Rossi‎ et al.
  • Frontiers in pharmacology‎
  • 2016‎

Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice were sensitized with s.c. injection of ovalbumin (OVA) on days 1 and 8. Sensitized mice received on days 9 and 12 on the shaved dorsal surface air administration to induce the development of the air-pouches. On day 15 animals were challenged by injection of OVA into the air-pouch. Salvinorin A, administered (10 mg/kg) before each allergen exposure, significantly reduced OVA-induced LT increase in the air pouch. This effect was coupled to a reduction in cell recruitment and Th2 cytokine production. In another set of experiments, mice were sensitized with OVA and both bronchial reactivity and pulmonary inflammation were assessed. Salvinorin A abrogated bronchial hyperreactivity and interleukin (IL)-13 production, without effect on pulmonary inflammation. Indeed cell infiltration and peribronchial edema were still present following diterpenoid treatment. Similarly, pulmonary IL-4 and plasmatic IgE levels were not modulated. Conversely, Salvinorin A significantly reduced LTC4 production in the lung of sensitized mice. Finally mast cell activity was evaluated by means of toluidine blue staining. Data obtained evidenced that Salvinorin A significantly inhibited mast cell degranulation in the lung. Our study demonstrates that Salvinorin A inhibits airway hyperreactivity induced by sensitization by inhibition of LT production and mast cell degranulation. In conclusion Salvinorin A could represent a promising candidate for drug development in allergic diseases such as asthma.


Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism.

  • Luiz Henrique C Vasconcelos‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Asthma is a chronic inflammatory disease of the airways characterized by immune cell infiltrates, bronchial hyperresponsiveness, and declining lung function. Thus, the possible effects of virgin coconut oil on a chronic allergic lung inflammation model were evaluated. Morphology of lung and airway tissue exhibited peribronchial inflammatory infiltrate, epithelial hyperplasia, and smooth muscle thickening in guinea pigs submitted to ovalbumin sensitization, which were prevented by virgin coconut oil supplementation. Additionally, in animals with lung inflammation, trachea contracted in response to ovalbumin administration, showed a greater contractile response to carbachol (CCh) and histamine, and these responses were prevented by the virgin coconut oil supplementation. Apocynin, a NADPH oxidase inhibitor, did not reduce the potency of CCh, whereas tempol, a superoxide dismutase mimetic, reduced potency only in nonsensitized animals. Catalase reduced the CCh potency in nonsensitized animals and animals sensitized and treated with coconut oil, indicating the participation of superoxide anion and hydrogen peroxide in the hypercontractility, which was prevented by virgin coconut oil. In the presence of L-NAME, a nitric oxide synthase (NOS) inhibitor, the CCh curve remained unchanged in nonsensitized animals but had increased efficacy and potency in sensitized animals, indicating an inhibition of endothelial NOS but ineffective in inhibiting inducible NOS. In animals sensitized and treated with coconut oil, the CCh curve was not altered, indicating a reduction in the release of NO by inducible NOS. These data were confirmed by peribronchiolar expression analysis of iNOS. The antioxidant capacity was reduced in the lungs of animals with chronic allergic lung inflammation, which was reversed by the coconut oil, and confirmed by analysis of peribronchiolar 8-iso-PGF2α content. Therefore, the virgin coconut oil supplementation reverses peribronchial inflammatory infiltrate, epithelial hyperplasia, smooth muscle thickening, and hypercontractility through oxidative stress and its interactions with the NO pathway.


Prenatal development is linked to bronchial reactivity: epidemiological and animal model evidence.

  • Katharine C Pike‎ et al.
  • Scientific reports‎
  • 2014‎

Chronic cardiorespiratory disease is associated with low birthweight suggesting the importance of the developmental environment. Prenatal factors affecting fetal growth are believed important, but the underlying mechanisms are unknown. The influence of developmental programming on bronchial hyperreactivity is investigated in an animal model and evidence for comparable associations is sought in humans. Pregnant Wistar rats were fed either control or protein-restricted diets throughout pregnancy. Bronchoconstrictor responses were recorded from offspring bronchial segments. Morphometric analysis of paraffin-embedded lung sections was conducted. In a human mother-child cohort ultrasound measurements of fetal growth were related to bronchial hyperreactivity, measured at age six years using methacholine. Protein-restricted rats' offspring demonstrated greater bronchoconstriction than controls. Airway structure was not altered. Children with lesser abdominal circumference growth during 11-19 weeks' gestation had greater bronchial hyperreactivity than those with more rapid abdominal growth. Imbalanced maternal nutrition during pregnancy results in offspring bronchial hyperreactivity. Prenatal environmental influences might play a comparable role in humans.


A multicenter study on the safety and efficacy of bronchial thermoplasty in adults with severe asthma.

  • Karan Madan‎ et al.
  • Lung India : official organ of Indian Chest Society‎
  • 2021‎

Bronchial thermoplasty (BT) is a treatment option for patients with severe asthma. BT involves controlled delivery of radiofrequency energy using a bronchoscopic catheter, thereby reducing bronchial hyperreactivity. Herein, we describe our experience on the safety and efficacy of BT in severe asthma.


Murine model of steroid-resistant neutrophilic bronchial asthma as an attempt to simulate human pathology.

  • P Shilovskiy Igor‎ et al.
  • Journal of immunological methods‎
  • 2022‎

Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the airways. The majority of patients with mild to moderate BA develop Th2-biased eosinophilic pulmonary inflammation and respond well to corticosteroid treatment. However up to 10% of BA patients develop severe pathology, which is associated with neutrophilic inflammation and resistant to conventional corticosteroid therapy. Contrary to eosinophil-predominant airway inflammation neutrophilic BA is developed through Th1- and Th17-immune responses. However, the etiology of corticoid insensitive neutrophilic BA is still remains unclear. Therefore, in the current study we developed a mouse model of BA with predominant neutrophilic rather than eosinophilic pulmonary inflammation. BALB/c mice were immunized with the mixture of the ovalbumin allergen and Freund's adjuvant, followed by aerosol challenge with the same allergen mixed with E. coli lipopolysaccharide. As a result, mice developed the main BA manifestations: production of allergen specific IgE, development of airway hyperreactivity, airway remodeling and pulmonary neutrophilic inflammation. Moreover, this pathology developed through Th1- and Th17-dependent mechanisms and mice with induced neutrophilic BA phenotype responded poorly to dexamethasone treatment, that coincide to clinical observations. The established mouse model could be useful both for studying the pathogenesis and for testing novel approaches to control neutrophilic BA.


Airway obstruction and bronchial reactivity from age 1 month until 13 years in children with asthma: A prospective birth cohort study.

  • Henrik Wegener Hallas‎ et al.
  • PLoS medicine‎
  • 2019‎

Studies have shown that airway obstruction and increased bronchial reactivity are present in early life in children developing asthma, which challenges the dogma that airway inflammation leads to low lung function. Further studies are needed to explore whether low lung function and bronchial hyperreactivity are inherent traits increasing the risk of developing airway inflammation and asthmatic symptoms in order to establish timely primary preventive initiatives.


Atorvastatin has a protective effect in a mouse model of bronchial asthma through regulating tissue transglutaminase and triggering receptor expressed on myeloid cells-1 expression.

  • Ming-Wei Liu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. Statin drugs have improved respiratory health and their therapeutic potential in asthma has been tested in clinical trials. However, the mechanism of action of statins in this context has remained elusive. The present study hypothesized that atorvastatin treatment of ovalbumin-exposed mice attenuates early features of airway remodeling via a mevalonate-dependent mechanism. BALB/c mice were sensitized with ovalbumin and atorvastatin was delivered via oral gavage prior to each ovalbumin exposure. Reverse transcription-semi-quantitative polymerase chain reaction (RT-semi-qPCR), ELISA and western blot analysis were used to assess the expression of a number of relevant genes, including tissue transglutaminase (tTG), triggering receptor expressed on myeloid cells (TREM)-1, nuclear factor erythroid 2-related factor (Nrf) 2, hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-9 and tissue inhibitors of metalloproteinases (TIMP)-1 in lung tissue. α-Smooth muscle actin (α-SMA) activity was measured by immunohistochemistry. Airway hyperresponsiveness, lung collagen deposition, airway wall area, airway smooth muscle thickness and lung pathology were also assessed. Atorvastatin treatment led to downregulation of tTG and TREM-1 expression in lung tissue after ovalbumin sensitization, blocked the activity of MMP-9, vascular endothelial growth factor, nuclear factor-κB p65, α-SMA, HIF-α and TGF-β1 and up-regulated Nrf2 expression. Furthermore, the number of lymphocytes and eosinophils in the atorvastatin group was significantly lower than that in the control group. In addition, airway hyperresponsiveness, lung collagen deposition, airway wall area, airway smooth muscle thickness and pathological changes in the lung were significantly decreased in the atorvastatin group, and tumor necrosis factor-α, interleukin (IL)-8, IL-13 and IL-17 in serum were significantly decreased. Histological results demonstrated the attenuating effect of atorvastatin on ovalbumin-induced airway remodeling in asthma. In conclusion, the present study indicated that atorvastatin significantly alleviated ovalbumin-induced airway remodeling in asthma by downregulating tTG and TREM-1 expression. The marked protective effects of atorvastatin suggest its therapeutic potential in ovalbumin-induced airway remodeling in asthma treatment.


Combination of ipratropium bromide and salbutamol in children and adolescents with asthma: A meta-analysis.

  • Hongzhen Xu‎ et al.
  • PloS one‎
  • 2021‎

A combination of ipratropium bromide (IB) and salbutamol is commonly used to treat asthma in children and adolescents; however, there has been a lack of consistency in its usage in clinical practice.


The Role of Interleukin-37 in the Pathogenesis of Allergic Diseases.

  • I P Shilovskiy‎ et al.
  • Acta naturae‎
  • 2019‎

Cytokines of the interleukin-1 (IL-1) family play an important role in the realization of the protective functions of innate immunity and are the key mediators involved in the pathogenesis of a wide range of diseases, including various manifestations of allergy. The IL-1 family includes more than 11 members. However, the functions of many of them remain to be elucidated. Recently, new members of the IL-1 family have been discovered. In 2000, several independent research groups reported the discovery of a new interleukin of this family, which was named IL-37, or IL-1F7 (according to the new nomenclature). IL-37 was assigned to the IL-1 family based on its structural similarity with other members of this family. The study of its biological properties showed that its activity changes in inflammatory diseases, such as rheumatoid arthritis, psoriasis, as well as allergic diseases (allergic rhinitis, bronchial asthma, and atopic dermatitis). However, unlike most members of the IL-1 family, IL-37 acts as a negative regulator of inflammation. Activation of IL-37 suppresses inflammation, resulting in the suppression of inflammatory cytokines and chemokines, which in turn prevents infiltration of pro-inflammatory cells, mainly eosinophils and neutrophils. The exact molecular and cellular mechanisms of the anti-inflammatory effect of IL-37 in the development of allergic diseases (AD) have not been fully studied. This review summarizes and analyzes the accumulated experimental data on the role of IL-37 in the pathogenesis of AD, such as allergic rhinitis, bronchial asthma, and atopic dermatitis.


Lung dendritic cells undergo maturation and polarization towards a T helper type 2-stimulating phenotype in a mouse model of asthma: Role of nerve growth factor.

  • Qingwu Qin‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

Nerve growth factor (NGF) and dendritic cells (DCs) have been hypothesized to modulate T cell responses in a mouse model of asthma. However, whether NGF plays a role in regulating the maturation and polarization of lung DCs remains unclear. In the present study, the effect of NGF inhibition on the maturation and phenotype of lung DCs was investigated in a mouse model of asthma. BALB/c mice were sensitized and challenged with ovalbumin (OVA), and subsequently received anti-NGF treatment. At 24 h following the last challenge, airway responsiveness and inflammation were examined. The concentrations of NGF, interferon (IFN)-γ and interleukin (IL)-4 were analyzed. In addition, maturation and CD103 expression in the lung DCs were investigated. Anti-NGF treatment was found to significantly reduce airway hyperreactivity and inflammation in asthmatic mice. In addition, a subdued T helper 2 (Th2) response was observed, characterized by the downregulation of IL-4 and the upregulation of IFN-γ. Furthermore, the expression of the DC surface molecules, CD80, CD86 and major histocompatibility complex class II, as well as the proportion of lung CD103+ DCs, decreased in the OVA-sensitized and challenged mice. The proportion of lung CD103+ DCs also exhibited a positive correlation with the levels of plasma NGF in the mice. These results may provide an explanation for the role of NGF in amplifying the Th2 response in allergic diseases. Therefore, NGF may promote the maturation and polarization towards a Th2-stimulating phenotype of activated DCs, contributing to an amplification of the Th2 response in asthma.


SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways.

  • Dan Tan‎ et al.
  • Nature communications‎
  • 2023‎

Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.


Are asthmatics salt-sensitive? A preliminary controlled study.

  • T C Medici‎ et al.
  • Chest‎
  • 1993‎

Epidemiologic evidence suggests that high levels of salt consumption are associated with "spastic" disorders of smooth muscles, ie, essential hypertension and bronchial asthma. Experimentally, it has been shown that high intake of salt leads to increased bronchial hyperreactivity in asthmatics, ie, enhanced contractility of bronchial muscle to spasmogenic stimuli. On the basis of these observations, the following questions were asked: (1) Does salt loading worsen the clinical and functional findings in asthmatics? (2) Is it the sodium or the chloride in salt that is important?


Prevention of airway hyperresponsiveness induced by left ventricular dysfunction in rats.

  • Ferenc Petak‎ et al.
  • Respiratory research‎
  • 2012‎

The effectiveness of strategies for treatment of the altered static lung volume and against the development of bronchial hyperreactivity (BHR) following a left ventricular dysfunction (LVD) induced by myocardial ischaemia was investigated in a rat model of sustained postcapillary pulmonary hypertension.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: