Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Second primary malignancies in patients with male breast cancer.

  • K Hemminki‎ et al.
  • British journal of cancer‎
  • 2005‎

An international multicentre study of first and second primary neoplasms associated with male breast cancer was carried out by pooling data from 13 cancer registries. Among a total of 3409 men with primary breast cancer, 426 (12.5%) developed a second neoplasia; other than breast cancer, a 34% overall excess risk of second primary neoplasia, affecting the small intestine (standardised incidence ratio, 4.95, 95% confidence interval, 1.35-12.7), rectum (1.78, 1.20-2.54), pancreas (1.93, 1.14-3.05), skin (nonmelanoma, 1.65, 1.16-2.29), prostate (1.61, 1.34-1.93) and lymphohaematopoietic system (1.63, 1.12-2.29). A total of 225 male breast cancers was recorded after cancers other than breast cancer, but an increase was found only after lymphohaematopoietic neoplasms. BRCA2 (and to some extent BRCA1) mutations may explain the findings for pancreatic and prostate cancers. Increases at other sites may be related to unknown factors or to chance. This large study shows that the risks for second discordant tumours after male breast cancer pose only a moderate excess risk.


Clinicopathological features, genetic alterations, and BRCA1 promoter methylation in Japanese male patients with breast cancer.

  • Akihiko Shimomura‎ et al.
  • Breast cancer research and treatment‎
  • 2023‎

Male breast cancer (MBC) is a rare cancer accounting for only 1% of all male cancers and is, therefore, poorly studied. We aimed to characterize the subtypes of MBC in Japanese patients based on genetic profiling, the presence of tumor-infiltrating cells, and the expression of immunohistochemical markers.


Integrated analysis of label-free quantitative proteomics and bioinformatics reveal insights into signaling pathways in male breast cancer.

  • Talita Helen Bombardelli Gomig‎ et al.
  • Genetics and molecular biology‎
  • 2021‎

Male breast cancer (MBC) is a rare malignancy that accounts for about 1.8% of all breast cancer cases. In contrast to the high number of the "omics" studies in breast cancer in women, only recently molecular approaches have been performed in MBC research. High-throughput proteomics based methodologies are promisor strategies to characterize the MBC proteomic signatures and their association with clinico-pathological parameters. In this study, the label-free quantification-mass spectrometry and bioinformatics approaches were applied to analyze the proteomic profiling of a MBC case using the primary breast tumor and the corresponding axillary metastatic lymph nodes and adjacent non-tumor breast tissues. The differentially expressed proteins were identified in the signaling pathways of granzyme B, sirtuins, eIF2, actin cytoskeleton, eNOS, acute phase response and calcium and were connected to the upstream regulators MYC, PI3K SMARCA4 and cancer-related chemical drugs. An additional proteomic comparative analysis was performed with a primary breast tumor of a female patient and revealed an interesting set of proteins, which were mainly involved in cancer biology. Together, our data provide a relevant data source for the MBC research that can help the therapeutic strategies for its management.


Molecular analysis of a male breast cancer patient with prolonged stable disease under mTOR/PI3K inhibitors BEZ235/everolimus.

  • A Rose Brannon‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2016‎

The mTORC1 inhibitor everolimus (Afinitor/RAD001) has been approved for multiple cancer indications, including ER(+)/HER2(-) metastatic breast cancer. However, the combination of everolimus with the dual PI3K/mTOR inhibitor BEZ235 was shown to be more efficacious than either everolimus or BEZ235 alone in preclinical models. Herein, we describe a male breast cancer (MBC) patient who was diagnosed with hormone receptor-positive (HR(+))/HER2(-) stage IIIA invasive ductal carcinoma and sequentially treated with chemoradiotherapy and hormonal therapy. Upon the development of metastases, the patient began a 200 mg twice-daily BEZ235 and 2.5 mg weekly everolimus combination regimen. The patient sustained a prolonged stable disease of 18 mo while undergoing the therapy, before his tumor progressed again. Therefore, we sought to both better understand MBC and investigate the underlying molecular mechanisms of the patient's sensitivity and subsequent resistance to the BEZ235/everolimus combination therapy. Genomic and immunohistochemical analyses were performed on samples collected from the initial invasive ductal carcinoma pretreatment and a metastasis postprogression on the BEZ235/everolimus combination treatment. Both tumors were relatively quiet genomically with no overlap to recurrent MBC alterations in the literature. Markers of PI3K/mTOR pathway hyperactivation were not identified in the pretreatment sample, which complements previous reports of HR(+) female breast cancers being responsive to mTOR inhibition without this activation. The postprogression sample, however, demonstrated greater than fivefold increased estrogen receptor and pathogenesis-related protein expression, which could have constrained the PI3K/mTOR pathway inhibition by BEZ235/everolimus. Overall, these analyses have augmented the limited episteme on MBC genetics and treatment.


Genetic predisposition and prediction protocol for epithelial neoplasms in disease-free individuals: A systematic review.

  • J Gowthami‎ et al.
  • Journal of oral and maxillofacial pathology : JOMFP‎
  • 2020‎

Epithelial neoplasm is an important global health-care problem, with high morbidity and mortality rates. Early diagnosis and appropriate treatment are essential for increased life survival. Prediction of occurrence of malignancy in a disease-free individual by any means will be a great breakthrough for healthy living.


Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1.

  • Yan Zhao‎ et al.
  • Aging‎
  • 2021‎

Breast cancer (BC) is a common malignant tumor in females. The challenge in treating BC is overcoming chemoresistance. Exosome-mediated transfer of miRNAs is a molecule-shuttle in intercellular communication. Thus, we aimed to investigate whether exosomal miRNA-205 could affect chemoresistance and tumorigenesis in recipient tumor cells and to elucidate the underlying mechanism in vivo and in vitro. Microarray and qRT-PCR assays demonstrated that miRNA-205 was upregulated in tamoxifen resistance MCF-7/TAMR-1 (M/T) cells and M/T cell-derived exosomes (M/T-Exo). The M/T-Exo was internalized by human BC cells (BCCs), causing increased expression of miRNA-205 in BCCs. Coculturing with M/T-Exo promoted tamoxifen resistance, proliferation, migration, and invasion while suppressed apoptosis in recipient BCCs, which were associated with activating the caspase pathway and phosphorylating Akt. Luciferase reporter assays showed that miRNA-205 directly targeted E2F Transcription Factor 1 (E2F1) in BCCs. Furthermore, knockdown of miRNA-205 or overexpression of E2F1 reversed the roles of M/T-Exo in BCCs. In vivo experiments showed that the intratumoral injection of M/T-Exo caused greater tamoxifen resistance and larger tumor size relative to mice treated with miRNA-205-knockdown or E2F1-overexpressing BCCs. Together, the results suggest that exosomal miRNA-205 may promote tamoxifen resistance and tumorigenesis in BC through targeting E2F1 in vivo and in vitro.


Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer.

  • Montserrat Pérez-Salvia‎ et al.
  • Oncotarget‎
  • 2017‎

BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.


Tumor-Infiltrating CD8 T Cells Predict Clinical Breast Cancer Outcomes in Young Women.

  • Yong Won Jin‎ et al.
  • Cancers‎
  • 2020‎

Young women with breast cancer have disproportionately poor clinical outcomes compared to their older counterparts. The underlying biological differences behind this age-dependent disparity are still unknown and warrant investigation. Recently, the tumor immune landscape has received much attention for its prognostic value and therapeutic targets. The differential tumor immune landscape between age groups in breast cancer has not yet been characterized, and may contribute to the age-related differences in clinical outcomes. Computational deconvolution was used to quantify abundance of immune cell types from bulk transcriptome profiles of breast cancer patients from two independent datasets. No significant differences in immune cell composition that were consistent in the two cohorts were found between the young and old age groups. Regardless of absence of significant differences, the higher tumor infiltration of several immune cell types, such as CD8+ T and CD4+ T cells, was associated with better clinical outcomes in the young but not in the old age group. Mutational signatures analysis showed signatures previously not found in breast cancer to be associated with tumor-infiltrating lymphocyte (TIL) levels in the young age group, whereas in the old group, all significant signatures were those previously found in breast cancer. Pathway analysis revealed different gene sets associated with TIL levels for each age group from the two cohorts. Overall, our results show trends towards better clinical outcomes for high TIL levels, especially CD8+ T cells, but only in the young age group. Furthermore, our work suggests that the underlying biological differences may involve multiple levels of tumor physiology.


Cancer testis antigen Sperm Protein 17 as a new target for triple negative breast cancer immunotherapy.

  • Leonardo Mirandola‎ et al.
  • Oncotarget‎
  • 2017‎

Breast carcinoma is a major health issue for millions of women. Current therapies have serious side effects, and are only partially effective in patients with metastatic tumors. Thus, the need for novel and less toxic therapies is urgent. Moreover, hormonal and antibody therapies effective in other subtypes are not effective in Triple Negative Breast Cancer (TNBC). Immunotherapeutic strategies directed against specific tumor-associated antigens (TAAs) and mediated by specific cytotoxic T lymphocytes (CTL) have been largely underexplored in this disease. Cancer-testis antigens (CTA) are a group of TAAs displaying the ideal characteristics of promising vaccine targets, i.e. strong immunogenicity and cancer specificity. The CTA, Sperm Protein 17 (SP17), has been found to be aberrantly expressed in different neoplasms, including ovarian and esophageal cancers, nervous system tumors and multiple myeloma, and has been suggested as a candidate target for immunotherapy. Here, we evaluated SP17 expression levels in breast cancer cell lines, invasive ductal breast carcinoma, including patients with TNBC, and adjacent non-neoplastic breast tissue, and determined whether SP17 was capable of generating SP17-specific cytotoxic T lymphocytes in vitro. We showed that SP17 is expressed in breast cancer cell lines and primary breast tumors and importantly in TNBC subtype, but not in adjacent non-tumoral breast tissue or unaffected tissues, except in male germinal cells. Furthermore, we detected specific anti-SP17 antibodies in patients' sera and we generated SP17-specific, HLA class I-restricted, cytotoxic T lymphocytes capable of efficiently killing breast cancer cells.


Cathepsin L promotes angiogenesis by regulating the CDP/Cux/VEGF-D pathway in human gastric cancer.

  • Tao Pan‎ et al.
  • Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association‎
  • 2020‎

Increasing evidence indicates that angiogenesis plays an important role in tumor progression. The function of cathepsin L (CTSL), an endosomal proteolytic enzyme, in promoting tumor metastasis is well recognized. The mechanisms by which CTSL has promoted the angiogenesis of gastric cancer (GC), however, remains unclear.


PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer.

  • Chao Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Pyruvate kinase M2 (PKM2) is a key kinase of glycolysis and is characteristic of all proliferating cells. The role of PKM2 in gastric cancer (GC) is still ambiguous and yet to be determined. To better understand the role of PKM2 in both the migration and invasion of GC, we measured the expression of PKM2 in GC cell lines using qRT-PCR and western blot. The prognostic value of PKM2 was analyzed by Immunohistochemistry in a cohort containing 88 GC patients. PKM2 was knocked down by the short hairpin RNA plasmid vector in NCI-N87 and BGC-823 cells, and the biological behavior and downstream signaling pathways were also investigated in vitro. Subcutaneous xenografts and pulmonary metastases models were constructed in nude mice to compare the differences in tumorgenesis and metastasis after Knockdown of PKM2. Our results obtained from in vitro cell biological behavior, in vivo tumorigenicity studies, and primary GC samples revealed an oncogenic role for PKM2 in GC. Furthermore, for those GC patients who received radical resection, PKM2 might serve as a novel prognostic biomarker and target which would allow for a brand new treatment strategy for GC in the clinical settings.


Cancer Burden Among Arab-World Females in 2020: Working Toward Improving Outcomes.

  • Hala Mahdi‎ et al.
  • JCO global oncology‎
  • 2022‎

Cancer is the leading cause of morbidity and mortality worldwide. This work presents the Arab-world females' cancers (AFCs) statistics in 2020, compared with the 2018 AFCs statistics, the Arab-world male cancers statistics, and the world females' cancers (WFCs) statistics in 2020. This can help set the stage for a better policy for cancer control programs and improve outcomes.


Inhibiting autophagy potentiates the antitumor efficacy of Euphorbia royleana for canine mammary gland tumors.

  • Yu-Ya Huang‎ et al.
  • BMC veterinary research‎
  • 2020‎

Canine mammary gland tumors (cMGTs) are the most common neoplasms in intact female canines and viewed as a suitable model for studying human breast cancers. Euphorbia royleana has been reported to have a variety of antitumor efficacies. We have prepared the crude extracts of E. royleana in ethanol and hexane solvents to evaluate the anti-tumor effects for cMGT in vitro and in vivo.


SEMG1/2 augment energy metabolism of tumor cells.

  • Oleg Shuvalov‎ et al.
  • Cell death & disease‎
  • 2020‎

SEMG1 and SEMG2 genes belong to the family of cancer-testis antigens (CTAs), whose expression normally is restricted to male germ cells but is often restored in various malignancies. High levels of SEMG1 and SEMG2 expression are detected in prostate, renal, and lung cancer as well as hemoblastosis. However, the functional importance of both SEMGs proteins in human neoplasms is still largely unknown. In this study, by using a combination of the bioinformatics and various cellular and molecular assays, we have demonstrated that SEMG1 and SEMG2 are frequently expressed in lung cancer clinical samples and cancer cell lines of different origins and are negatively associated with the survival rate of cancer patients. Using the pull-down assay followed by LC-MS/MS mass-spectrometry, we have identified 119 proteins associated with SEMG1 and SEMG2. Among the SEMGs interacting proteins we noticed two critical glycolytic enzymes-pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Importantly, we showed that SEMGs increased the protein level and activity of both PKM2 and LDHA. Further, both SEMGs increased the membrane mitochondrial potential (MMP), glycolysis, respiration, and ROS production in several cancer cell lines. Taken together, these data provide first evidence that SEMGs can up-regulate the energy metabolism of cancer cells, exemplifying their oncogenic features.


Global Autozygosity Is Associated with Cancer Risk, Mutational Signature and Prognosis.

  • Limin Jiang‎ et al.
  • Cancers‎
  • 2020‎

Global autozygosity quantifies the genome-wide levels of homozygous and heterozygous variants. It is the signature of non-random reproduction, though it can also be driven by other factors, and has been used to assess risk in various diseases. However, the association between global autozygosity and cancer risk has not been studied. From 4057 cancer subjects and 1668 healthy controls, we found strong associations between global autozygosity and risk in ten different cancer types. For example, the heterozygosity ratio was found to be significantly associated with breast invasive carcinoma in Blacks and with male skin cutaneous melanoma in Caucasians. We also discovered eleven associations between global autozygosity and mutational signatures which can explain a portion of the etiology. Furthermore, four significant associations for heterozygosity ratio were revealed in disease-specific survival analyses. This study demonstrates that global autozygosity is effective for cancer risk assessment.


Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant.

  • Qipan Deng‎ et al.
  • Nature communications‎
  • 2019‎

A noncoding polymorphism (rs78378222) in TP53, carried by scores of millions of people, was previously associated with moderate risk of brain tumors and other neoplasms. We find a positive association between this variant and soft tissue sarcoma. In sharp contrast, it is protective against breast cancer. We generated a mouse line carrying this variant and found that it accelerates spontaneous tumorigenesis and glioma development, but strikingly, delays mammary tumorigenesis. The variant creates a miR-382-5p targeting site and compromises a miR-325-3p site. Their differential expression results in p53 downregulation in the brain, but p53 upregulation in the mammary gland of polymorphic mice compared to that of wild-type littermates. Thus, this variant is at odds with Li-Fraumeni Syndrome mutants in breast cancer predisposition yet consistent in glioma predisposition. Our findings elucidate an underlying mechanism of cancer susceptibility that is conferred by genetic variation and yet altered by microRNA expression.


Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis.

  • Song Fan‎ et al.
  • Oncotarget‎
  • 2015‎

Cisplatin has been widely employed as a cornerstone chemotherapy treatment for a wide spectrum of solid neoplasms; increasing tumor responsiveness to cisplatin has been a topic of interest for the past 30 years. Strong evidence has indicated that mitochondrial fission participates in the regulation of apoptosis in many diseases; however, whether mitochondrial fission regulates cisplatin sensitivity remains poorly understood. Here, we show that MFF mediated mitochondrial fission and apoptosis in tongue squamous cell carcinoma (TSCC) cells after cisplatin treatment and that miR-593-5p was downregulated in this process. miR-593-5p attenuated mitochondrial fission and cisplatin sensitivity by targeting the 3' untranslated region sequence of MFF and inhibiting its translation. In exploring the underlying mechanism of miR-593-5p downregulation, we observed that BRCA1 transactivated miR-593-5p expression and attenuated cisplatin sensitivity in vitro. The BRCA1-miR-593-5p-MFF axis also affected cisplatin sensitivity in vivo. Importantly, in a retrospective analysis of multiple centers, we further found that the BRCA1-miR-593-5p-MFF axis was significantly associated with cisplatin sensitivity and the survival of patients with TSCC. Together, our data reveal a model for mitochondrial fission regulation at the transcriptional and post-transcriptional levels; we also reveal a new pathway for BRCA1 in determining cisplatin sensitivity through the mitochondrial fission program.


Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways.

  • Shaimaa S Ibrahim‎ et al.
  • Neuropharmacology‎
  • 2021‎

Many cancer survivors suffer from chemotherapy-induced cognitive impairment known as 'Chemobrain'. Doxorubicin -topoisomerase II inhibitor- is widely used in breast cancer, hematological cancers and other neoplasms. However, it is reported to precipitate cognitive impairment in cancer patients via inducing oxidative stress and inflammatory response. Chrysin -5,7 dihydroxyflavone- has promising antioxidant, anti-inflammatory and anticancer properties, but suffers low bioavailability owing to its poor solubility and extensive metabolism. In the present study, chrysin was successfully formulated as transfersomal lipid vesicles and chitosan composite vesicles (CCV) exhibiting a nanometric size range, high drug entrapment efficiency, and controlled release over a 72h period. Intranasal administration of optimized chrysin formulations at a reduced dose of 0.5 mg/kg improved doxorubicin-induced memory impairment in rats evidenced by behavioral testing, inhibition of acetylcholinesterase activity and oxidative stress markers; catalase, reduced glutathione, lipid peroxidation and hydrogen peroxide. This could reduce caspase-3 expression inhibiting apoptosis. Moreover, chrysin formulations were able to inhibit doxorubicin-induced Tol-like receptor 4 (TLR4) and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) protein expression which in turn, reduced procaspase-1, Cysteinyl Aspartate Protease-1 (caspase-1) and Interleukin-1β (IL-1β) protein expression via inhibiting Nod-like receptor pyrin containing 3 (NLRP3) inflammasome. Collectively, our findings suggest the enhanced therapeutic potential of chrysin when formulated as transfersomes and CCV against chemotherapy-induced chemobrain via hindering acetylcholinesterase, oxidative stress and TLR4-NF-kB(p65)-NLRP3 pathways.


Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups.

  • Naif Zaman‎ et al.
  • PloS one‎
  • 2014‎

The androgen receptor (AR) remains an important contributor to the neoplastic evolution of prostate cancer (CaP). CaP progression is linked to several somatic AR mutational changes that endow upon the AR dramatic gain-of-function properties. One of the most common somatic mutations identified is Thr877-to-Ala (T877A), located in the ligand-binding domain, that results in a receptor capable of promiscuous binding and activation by a variety of steroid hormones and ligands including estrogens, progestins, glucocorticoids, and several anti-androgens. In an attempt to further define somatic mutated AR gain-of-function properties, as a consequence of its promiscuous ligand binding, we undertook a proteomic/network analysis approach to characterize the protein interactome of the mutant T877A-AR in LNCaP cells under eight different ligand-specific treatments (dihydrotestosterone, mibolerone, R1881, testosterone, estradiol, progesterone, dexamethasone, and cyproterone acetate). In extending the analysis of our multi-ligand complexes of the mutant T877A-AR we observed significant enrichment of specific complexes between normal and primary prostatic tumors, which were furthermore correlated with known clinical outcomes. Further analysis of certain mutant T877A-AR complexes showed specific population preferences distinguishing primary prostatic disease between white (non-Hispanic) vs. African-American males. Moreover, these cancer-related AR-protein complexes demonstrated predictive survival outcomes specific to CaP, and not for breast, lung, lymphoma or medulloblastoma cancers. Our study, by coupling data generated by our proteomics to network analysis of clinical samples, has helped to define real and novel biological pathways in complicated gain-of-function AR complex systems.


Polypoid colonic metastases from gastric stump carcinoma: A case report.

  • Bingxia Gao‎ et al.
  • Oncology letters‎
  • 2014‎

The present study aimed to investigate polypoid colonic metastases from gastric stump carcinoma by performing a retrospective analysis of the clinical data of a patient with such a diagnosis, and by discussing other previous case studies from the literature. The patient of the present study was an 80-year-old male who had undergone a gastrectomy 48 years previously for a benign perforated gastric ulcer. A colonoscopy revealed >10 multiple polypoid lesions of 6-10 mm in diameter distributed throughout the entire colon, except in the rectum. Each lesion had either erosion or a depression at the top and several were covered with a white fur-like substance. Biopsy specimens excised from the stomach showed a poorly-differentiated adenocarcinoma with diffuse signet ring cells, and a colonoscopy-guided biopsy revealed a signet ring cell adenocarcinoma. The patient was referred to the Oncology unit (Beijing Shijitan Hospital, Beijing, China) for assessment and chemotherapy treatment, which was initiated with 1,000 mg Xeloda orally administered twice a day for two-week courses every three weeks. The patient succumbed to upper gastrointestinal hemorrhage and pneumonia after three months. Gastric or gastric stump carcinoma may metastasize to the colon presenting as solitary or multiple colonic polyps. Thus, it is important to consider this diagnosis as such colon metastases may mimic solitary or multiple colonic polyps, which are commonly observed. A differential diagnosis is required in this complicated situation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: