Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,973 papers

Functional role of brain-engrafted macrophages against brain injuries.

  • Xi Feng‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Brain-resident microglia have a distinct origin compared to macrophages in other organs. Under physiological conditions, microglia are maintained by self-renewal from the local pool, independent of hematopoietic progenitors. Pharmacological depletion of microglia during whole-brain radiotherapy prevents synaptic loss and long-term recognition memory deficits. However, the origin or repopulated cells and the mechanisms behind these protective effects are unknown.


GFAP positivity in neurons following traumatic brain injuries.

  • Johann Zwirner‎ et al.
  • International journal of legal medicine‎
  • 2021‎

Glial fibrillary acidic protein (GFAP) is a well-established astrocytic biomarker for the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Few studies stated an accumulation of neuronal GFAP that was observed in various brain pathologies, including traumatic brain injuries. As the neuronal immunopositivity for GFAP in Alzheimer patients was shown to cross-react with non-GFAP epitopes, the neuronal immunopositivity for GFAP in TBI patients should be challenged. In this study, cerebral and cerebellar tissues of 52 TBI fatalities and 17 controls were screened for immunopositivity for GFAP in neurons by means of immunohistochemistry and immunofluorescence. The results revealed that neuronal immunopositivity for GFAP is most likely a staining artefact as negative controls also revealed neuronal GFAP staining. However, the phenomenon was twice as frequent for TBI fatalities compared to non-TBI control cases (12 vs. 6%). Neuronal GFAP staining was observed in the pericontusional zone and the ipsilateral hippocampus, but was absent in the contralateral cortex of TBI cases. Immunopositivity for GFAP was significantly correlated with the survival time (r = 0.306, P = 0.015), but no correlations were found with age at death, sex nor the post-mortem interval in TBI fatalities. This study provides evidence that the TBI-associated neuronal immunopositivity for GFAP is indeed a staining artefact. However, an absence post-traumatic neuronal GFAP cannot readily be assumed. Regardless of the particular mechanism, this study revealed that the artefact/potential neuronal immunopositivity for GFAP is a global, rather than a regional brain phenomenon and might be useful for minimum TBI survival time determinations, if certain exclusion criteria are strictly respected.


Devastating brain injuries: assessment and management part I: overview of brain death.

  • Tara D Dixon‎ et al.
  • The western journal of emergency medicine‎
  • 2009‎

No abstract available


Magnesium-ibogaine therapy in veterans with traumatic brain injuries.

  • Kirsten N Cherian‎ et al.
  • Nature medicine‎
  • 2024‎

Traumatic brain injury (TBI) is a leading cause of disability. Sequelae can include functional impairments and psychiatric syndromes such as post-traumatic stress disorder (PTSD), depression and anxiety. Special Operations Forces (SOF) veterans (SOVs) may be at an elevated risk for these complications, leading some to seek underexplored treatment alternatives such as the oneirogen ibogaine, a plant-derived compound known to interact with multiple neurotransmitter systems that has been studied primarily as a treatment for substance use disorders. Ibogaine has been associated with instances of fatal cardiac arrhythmia, but coadministration of magnesium may mitigate this concern. In the present study, we report a prospective observational study of the Magnesium-Ibogaine: the Stanford Traumatic Injury to the CNS protocol (MISTIC), provided together with complementary treatment modalities, in 30 male SOVs with predominantly mild TBI. We assessed changes in the World Health Organization Disability Assessment Schedule from baseline to immediately (primary outcome) and 1 month (secondary outcome) after treatment. Additional secondary outcomes included changes in PTSD (Clinician-Administered PTSD Scale for DSM-5), depression (Montgomery-Åsberg Depression Rating Scale) and anxiety (Hamilton Anxiety Rating Scale). MISTIC resulted in significant improvements in functioning both immediately (Pcorrected < 0.001, Cohen's d = 0.74) and 1 month (Pcorrected < 0.001, d = 2.20) after treatment and in PTSD (Pcorrected < 0.001, d = 2.54), depression (Pcorrected < 0.001, d = 2.80) and anxiety (Pcorrected < 0.001, d = 2.13) at 1 month after treatment. There were no unexpected or serious adverse events. Controlled clinical trials to assess safety and efficacy are needed to validate these initial open-label findings. ClinicalTrials.gov registration: NCT04313712 .


Suicides in degenerative neurocognitive disorders and traumatic brain injuries.

  • Tiina Talaslahti‎ et al.
  • European psychiatry : the journal of the Association of European Psychiatrists‎
  • 2024‎

Neuropsychiatric symptoms in major neurocognitive disorders have been strongly associated with suicidality.


Classifying mild traumatic brain injuries with functional network analysis.

  • F Anthony San Lucas‎ et al.
  • BMC systems biology‎
  • 2018‎

Traumatic brain injury (TBI) represents a critical health problem of which timely diagnosis and treatment remain challenging. TBI is a result of an external force damaging brain tissue, accompanied by delayed pathogenic events which aggravate the injury. Molecular responses to different mild TBI subtypes have not been well characterized. TBI subtype classification is an important step towards the development and application of novel treatments. The computational systems biology approach is proved to be a promising tool in biomarker discovery for central nervous system injury.


Quantitative brain electrical activity in the initial screening of mild traumatic brain injuries.

  • Brian O'Neil‎ et al.
  • The western journal of emergency medicine‎
  • 2012‎

The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possible role in the initial screening of ED mTBI patients as compared to NOC.


Characterization of pressure distribution in penetrating traumatic brain injuries.

  • Johan Davidsson‎ et al.
  • Frontiers in neurology‎
  • 2015‎

Severe impacts to the head commonly lead to localized brain damage. Such impacts may also give rise to temporary pressure changes that produce secondary injuries in brain volumes distal to the impact site. Monitoring pressure changes in a clinical setting is difficult; detailed studies into the effect of pressure changes in the brain call for the development and use of animal models. The aim of this study is to characterize the pressure distribution in an animal model of penetrating traumatic brain injuries (pTBI). This data may be used to validate mathematical models of the animal model and to facilitate correlation studies between pressure changes and pathology. Pressure changes were measured in rat brains while subjected to pTBI for a variety of different probe velocities and shapes; pointy, blunt, and flat. Experiments on ballistic gel samples were carried out to study the formation of any temporary cavities. In addition, pressure recordings from the gel experiments were compared to values recorded in the animal experiments. The pTBI generated short lasting pressure changes in the brain tissue; the pressure in the contralateral ventricle (CLV) increased to 8 bar followed by a drop to 0.4 bar when applying flat probes. The pressure changes in the periphery of the probe, in the Cisterna Magna, and the spinal canal, were significantly less than those recorded in the CLV or the vicinity of the skull base. High-speed videos of the gel samples revealed the formation of spherically shaped cavities when flat and spherical probes were applied. Pressure changes in the gel were similar to those recorded in the animals, although amplitudes were lower in the gel samples. We concluded cavity expansion rate rather than cavity size correlated with pressure changes in the gel or brain secondary to probe impact. The new data can serve as validation data for finite element models of the trauma model and the animal and to correlate physical measurements with secondary injuries.


A minimum data set for traumatic brain injuries in Iran.

  • Maryam Edalatfar‎ et al.
  • Chinese journal of traumatology = Zhonghua chuang shang za zhi‎
  • 2022‎

Traumatic brain injury (TBI) is one of the major public health concerns worldwide. Developing a TBI registry could facilitate characterizing TBI, monitoring the quality of care, and quantifying the burden of TBI by collecting comparable and standardized epidemiological and clinical data. However, a national standard tool for data collection of the TBI registry has not been developed in Iran yet. This study aimed to develop a national minimum data set (MDS) for a hospital-based registry of patients suffering from TBI in Iran.


Amiodarone exacerbates brain injuries after hypoxic-ischemic insult in mice.

  • Masakazu Kotoda‎ et al.
  • BMC neuroscience‎
  • 2019‎

Sodium ion transportation plays a crucial role in the pathogenesis of hypoxic-ischemic brain injury. Amiodarone, a Vaughan-Williams class III antiarrhythmic drug, has been widely used to treat life-threatening arrhythmia and cardiac arrest worldwide. In addition to its inhibitory effects on the potassium channel, amiodarone also blocks various sodium ion transporters, including the voltage-gated sodium channel, sodium pump, and Na+/Ca+ exchanger. Considering these pharmacological profile, amiodarone may affect the influx-efflux balance of sodium ion in the hypoxic-ischemic brain. Previous studies suggest that the blockade of the voltage-gated sodium channel during hypoxic-ischemic brain injury exerts neuroprotection. On the contrary, the blockade of sodium pump or Na+/Ca+ exchanger during hypoxia-ischemia may cause further intracellular sodium accumulation and consequent osmotic cell death. From these perspectives, the effects of amiodarone on sodium ion balance on the hypoxic-ischemic brain can be both protective and detrimental depending on the clinical and pathophysiological conditions. In this study, we therefore investigated the effect of amiodarone on hypoxic-ischemic brain injury using a murine experimental model.


Nutritional Interventions in Children with Brain Injuries: A Systematic Review.

  • Tamy Colonetti‎ et al.
  • Nutrients‎
  • 2021‎

Brain injury has several consequences throughout life, its increased incidence has caused great public concern. The aim was identifying the main nutritional therapies recommended for children with brain injuries.


Mechanisms of blast induced brain injuries, experimental studies in rats.

  • M Risling‎ et al.
  • NeuroImage‎
  • 2011‎

Traumatic brain injuries (TBI) potentially induced by blast waves from detonations result in significant diagnostic problems. It may be assumed that several mechanisms contribute to the injury. This study is an attempt to characterize the presumed components of the blast induced TBI. Our experimental models include a blast tube in which an anesthetized rat can be exposed to controlled detonations of explosives that result in a pressure wave with a magnitude between 130 and 260 kPa. In this model, the animal is fixed with a metal net to avoid head acceleration forces. The second model is a controlled penetration of a 2mm thick needle. In the third model the animal is subjected to a high-speed sagittal rotation angular acceleration. Immunohistochemical labeling for amyloid precursor protein revealed signs of diffuse axonal injury (DAI) in the penetration and rotation models. Signs of punctuate inflammation were observed after focal and rotation injury. Exposure in the blast tube did not induce DAI or detectable cell death, but functional changes. Affymetrix Gene arrays showed changes in the expression in a large number of gene families including cell death, inflammation and neurotransmitters in the hippocampus after both acceleration and penetration injuries. Exposure to the primary blast wave induced limited shifts in gene expression in the hippocampus. The most interesting findings were a downregulation of genes involved in neurogenesis and synaptic transmission. These experiments indicate that rotational acceleration may be a critical factor for DAI and other acute changes after blast TBI. The further exploration of the mechanisms of blast TBI will have to include a search for long-term effects.


Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys.

  • Pei Zhang‎ et al.
  • Zoological research‎
  • 2020‎

Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys ( Macacafascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.


The Differences between Blast-Induced and Sports-Related Brain Injuries.

  • Yun Chen‎ et al.
  • Frontiers in neurology‎
  • 2013‎

No abstract available


Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents.

  • Gabriela Ilie‎ et al.
  • PloS one‎
  • 2015‎

The high prevalence of traumatic brain injuries (TBI) among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI.


Outcomes after Traumatic Brain Injury with Concomitant Severe Extracranial Injuries.

  • Tomoo Watanabe‎ et al.
  • Neurologia medico-chirurgica‎
  • 2018‎

Traumatic brain injury (TBI) is a leading cause of death and disability in trauma patients. Patients with TBI frequently sustain concomitant injuries in extracranial regions. The effect of severe extracranial injury (SEI) on the outcome of TBI is controversial. For 8 years, we retrospectively enrolled 485 patients with the blunt head injury with head abbreviated injury scale (AIS) ≧ 3. SEI was defined as AIS ≧ 3 injuries in the face, chest, abdomen, and pelvis/extremities. Vital signs and coagulation parameter values were also extracted from the database. Total patients were dichotomized into isolated TBI (n = 343) and TBI associated with SEI (n = 142). The differences in severity and outcome between these two groups were analyzed. To assess the relation between outcome and any variables showing significant differences in univariate analysis, we included the parameters in univariable and multivariable logistic regression analyses. Mortality was 17.8% in the isolated TBI group and 21.8% in TBI with SEI group (P = 0.38), but the Glasgow Outcome Scale (GOS) in the TBI with SEI group was unfavorable compared to the isolated TBI group (P = 0.002). Patients with SBP ≦ 90 mmHg were frequent in the TBI with SEI group. Adjusting for age, GCS, and length of hospital stay, SEI was a strong prognostic factor for mortality with adjusted ORs of 2.30. Hypotension and coagulopathy caused by SEI are considerable factors underlying the secondary insults to TBI. It is important to manage not only the brain but the whole body in the treatment of TBI patients with SEI.


Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles.

  • Anne-Sophie Wattiez‎ et al.
  • Pain‎
  • 2021‎

Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.


Emergency department management of traumatic brain injuries: A resource tiered review.

  • Julia Dixon‎ et al.
  • African journal of emergency medicine : Revue africaine de la medecine d'urgence‎
  • 2020‎

Traumatic brain injury is a leading cause of death and disability globally with an estimated African incidence of approximately 8 million cases annually. A person suffering from a TBI is often aged 20-30, contributing to sustained disability and large negative economic impacts of TBI. Effective emergency care has the potential to decrease morbidity from this multisystem trauma.


Protein Kinase C Inhibition Mediates Neuroblast Enrichment in Mechanical Brain Injuries.

  • Francisco García-Bernal‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Brain injuries of different etiologies lead to irreversible neuronal loss and persisting neuronal deficits. New therapeutic strategies are emerging to compensate neuronal damage upon brain injury. Some of these strategies focus on enhancing endogenous generation of neurons from neural stem cells (NSCs) to substitute the dying neurons. However, the capacity of the injured brain to produce new neurons is limited, especially in cases of extensive injury. This reduced neurogenesis is a consequence of the effect of signaling molecules released in response to inflammation, which act on intracellular pathways, favoring gliogenesis and preventing recruitment of neuroblasts from neurogenic regions. Protein kinase C (PKC) is a family of intracellular kinases involved in several of these gliogenic signaling pathways. The aim of this study was to analyze the role of PKC isozymes in the generation of neurons from neural progenitor cells (NPCs) in vitro and in vivo in brain injuries. PKC inhibition in vitro, in cultures of NPC isolated from the subventricular zone (SVZ) of postnatal mice, leads differentiation towards a neuronal fate. This effect is not mediated by classical or atypical PKC. On the contrary, this effect is mediated by novel PKCε, which is abundantly expressed in NPC cultures under differentiation conditions. PKCε inhibition by siRNA promotes neuronal differentiation and reduces glial cell differentiation. On the contrary, inhibition of PKCθ exerts a small anti-gliogenic effect and reverts the effect of PKCε inhibition on neuronal differentiation when both siRNAs are used in combination. Interestingly, in cortical brain injuries we have found expression of almost all PKC isozymes found in vitro. Inhibition of PKC activity in this type of injuries leads to neuronal production. In conclusion, these findings show an effect of PKCε in the generation of neurons from NPC in vitro, and they highlight the role of PKC isozymes as targets to produce neurons in brain lesions.


MR-Compatible Tactile Stimulator System: Application for Individuals with Brain Injuries.

  • Nahid KalantaryArdebily‎ et al.
  • Research square‎
  • 2024‎

Accurate perception of tactile information is essential for performing activities of daily living and learning new sensorimotor skills like writing. Deficits in perceiving tactile stimuli are associated with severity in physical disability. The mechanisms contributing to tactile deficits in individuals with brain injuries remain poorly understood in part due to insufficient assessment methods. Here, we provide a tactile stimulator system for studying the neural mechanisms contributing to tactile deficits in individuals with brain injuries during functional magnetic resonance imaging (fMRI). This tactile stimulator system consists of a pneumatically-controlled inflatable and deflatable balloon that interfaces with a digit of the hand to provide small forces. The magnitude of the applied force is delivered and controlled by modifying the air pressure in the balloon. The tactile simulator provides an 8 mm diameter tactile stimulus. The device's interface at the finger is compact, allowing it to be used with individuals who have a closed-fist posture following brain injury such as stroke or cerebral palsy. The tactile stimulator contains no metallic components and can be used in MRI research. The tactile stimulator system can repeatedly apply a force between 1 N and 2.4 N. This tactile stimulator system addresses limitations in past fMRI methodologies for assessing tactile perception by providing precise and repeatable force stimuli to a small area of the finger. Custom software automates the application of the force stimuli and permits synchronization with acquired fMRI data. This system can be used in subsequent testing to investigate deficits in sensory functioning in those with brain injuries.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: