Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,592 papers

Nuclear variants of bone morphogenetic proteins.

  • Jenny E Felin‎ et al.
  • BMC cell biology‎
  • 2010‎

Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts.


Bone Morphogenetic Proteins for Nucleus Pulposus Regeneration.

  • Anita Krouwels‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Matrix production by nucleus pulposus (NP) cells, the cells residing in the center of the intervertebral disc, can be stimulated by growth factors. Bone morphogenetic proteins (BMPs) hold great promise. Although BMP2 and BMP7 have been used most frequently, other BMPs have also shown potential for NP regeneration. Heterodimers may be more potent than single homodimers, but it is not known whether combinations of homodimers would perform equally well. In this study, we compared BMP2, BMP4, BMP6, and BMP7, their combinations and heterodimers, for regeneration by human NP cells. The BMPs investigated induced variable matrix deposition by NP cells. BMP4 was the most potent, both in the final neotissue glysosaminoglycan content and incorporation efficiency. Heterodimers BMP2/6H and BMP2/7H were more potent than their respective homodimer combinations, but not the BMP4/7H heterodimer. The current results indicate that BMP4 might have a high potential for regeneration of the intervertebral disc. Moreover, the added value of BMP heterodimers over their respective homodimer BMP combinations depends on the BMP combination applied.


Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila.

  • Milena Bauer‎ et al.
  • Developmental cell‎
  • 2023‎

Combinatorial signaling is key to instruct context-dependent cell behaviors. During embryonic development, adult homeostasis, and disease, bone morphogenetic proteins (BMPs) act as dimers to instruct specific cellular responses. BMP ligands can form both homodimers or heterodimers; however, obtaining direct evidence of the endogenous localization and function of each form has proven challenging. Here, we make use of precise genome editing and direct protein manipulation via protein binders to dissect the existence and functional relevance of BMP homodimers and heterodimers in the Drosophila wing imaginal disc. This approach identified in situ the existence of Dpp (BMP2/4)/Gbb (BMP5/6/7/8) heterodimers. We found that Gbb is secreted in a Dpp-dependent manner in the wing imaginal disc. Dpp and Gbb form a gradient of heterodimers, whereas neither Dpp nor Gbb homodimers are evident under endogenous physiological conditions. We find that the formation of heterodimers is critical for obtaining optimal signaling and long-range BMP distribution.


Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance.

  • Catherine Zabkiewicz‎ et al.
  • Endocrine-related cancer‎
  • 2017‎

Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.


Bone morphogenetic proteins regulate differentiation of human promyelocytic leukemia cells.

  • Iva Topić‎ et al.
  • Leukemia research‎
  • 2013‎

We investigated the role of bone morphogenetic proteins (BMPs) in suppression of all-trans retinoic acid (ATRA)-mediated differentiation of leukemic promyelocytes. In NB4 and HL60 cell lines, BMPs reduced the percentage of differentiated cells, and suppressed PU.1 and C/EBPε gene expression induced by ATRA. BMP and ATRA synergized in the induction of ID genes, causing suppression of differentiation. In primary acute promyelocytic leukemia bone-marrow samples, positive correlation of PML/RARα and negative of RARα with the expression of BMP-4, BMP-6 and ID genes were found. We concluded that BMPs may have oncogenic properties and mediate ATRA resistance by a mechanism that involves ID genes.


Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling.

  • Alcmène Chalazonitis‎ et al.
  • Developmental biology‎
  • 2011‎

The neural crest-derived cell population that colonizes the bowel (ENCDC) contains proliferating neural/glial progenitors. We tested the hypothesis that bone morphogenetic proteins (BMPs 2 and 4), which are known to promote enteric neuronal differentiation at the expense of proliferation, function similarly in gliogenesis. Enteric gliogenesis was analyzed in mice that overexpress the BMP antagonist, noggin, or BMP4 in the primordial ENS. Noggin-induced loss-of-function decreased, while BMP4-induced gain-of-function increased the glial density and glia/neuron ratio. When added to immunoisolated ENCDC, BMPs provoked nuclear translocation of phosphorylated SMAD proteins and enhanced both glial differentiation and expression of the neuregulin receptor ErbB3. ErbB3 transcripts were detected in E12 rat gut, before glial markers are expressed; moreover, expression of the ErbB3 ligand, glial growth factor 2 (GGF2) escalated rapidly after its first detection at E14. ErbB3-immunoreactive cells were located in the ENS of fetal and adult mice. GGF2 stimulated gliogenesis and proliferation and inhibited glial cell derived neurotrophic factor (GDNF)-promoted neurogenesis. Enhanced glial apoptosis occurred following GGF2 withdrawal; BMPs intensified this GGF2-dependence and reduced GGF2-stimulated proliferation. These observations support the hypotheses that BMPs are required for enteric gliogenesis and act by promoting responsiveness of ENCDC to ErbB3 ligands such as GGF2.


Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia.

  • Manuel Scimeca‎ et al.
  • Journal of translational medicine‎
  • 2017‎

Sarcopenia, osteoporosis and osteoarthritis are the most frequent musculoskeletal disorders affecting older people. The main aim of this study was to test the hypothesis that the balance between BMPs and myostatin pathways regulates the age-related muscle degeneration in OP and OA patients. To this end, we investigated the relationship among the expression of BMP-2/4-7, myostatin and phosphorylated Smads1-5-8 and the muscle quality, evaluated in term of fibers atrophy and satellite cells activity.


Receptor oligomerization and beyond: a case study in bone morphogenetic proteins.

  • Kai Heinecke‎ et al.
  • BMC biology‎
  • 2009‎

Transforming growth factor (TGF)beta superfamily members transduce signals by oligomerizing two classes of serine/threonine kinase receptors, termed type I and type II. In contrast to the large number of ligands only seven type I and five type II receptors have been identified in mammals, implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact with more than one receptor of either subtype, differences in binding affinities and specificities are likely important for the generation of distinct ligand-receptor complexes with different signaling properties.


Bone morphogenetic proteins are mediators of luteolysis in the human corpus luteum.

  • Junko Nio-Kobayashi‎ et al.
  • Endocrinology‎
  • 2015‎

Bone morphogenetic proteins (BMPs), members of the transforming growth factor β (TGFβ) superfamily, play important roles in folliculogenesis in various species; however, little is known about their role in luteal function. In this study, we investigated the expression, regulation, and effects of BMP2, BMP4, and BMP6 in carefully dated human corpora lutea and cultured human luteinized granulosa cells. The mRNA abundance of BMPs was increased in the regressing corpus luteum in vivo (P<.01-.001). Human chorionic gonadotropin (hCG) down-regulated BMP2, BMP4, and BMP6 transcripts both in vivo (P=.05-.001) and in vitro (P<.001), and decreased the mRNA abundance of BMP receptors (BMPR1A, BMPR1B, BMPR2; P<.05-.01) in vitro. Three BMPs were regulated by differential signaling pathways. H89, a protein kinase A inhibitor, increased the expression of both BMP2 (P<.05) and BMP4 (P<.05) while decreasing BMP6 (P<.01). PMA, a protein kinase C activator, decreased both BMP4 and BMP6 expression (P<.0001) while enhancing the mRNA abundance of BMP2 (P<.01). BMPs significantly down-regulated transcripts for LH/choriogonadotropin receptor (LHCGR; P<.001) and steroidogenic acute regulatory protein (STAR; P<.001), whereas up-regulating those of follicular stimulating hormone receptor (FSHR; P<.01) and aromatase (CYP19A1; P<.05-.01) in vitro, possessing an effect opposite to hCG but similar to Activin A. Like Activin A, BMP4 and BMP6 stimulated the expression of Inhibin/Activin subunits with a marked effect on INHBB expression (P<.05-.01). These data confirm that BMPs are increased during luteal regression and negatively regulated by hCG via differential mechanisms, suggesting that BMPs are one of the mediators of luteolysis in women.


The use of bone morphogenetic proteins (BMP) and pseudarthrosis, a literature review.

  • Oberdan Ribeiro Gonçalves de Oliveira‎ et al.
  • Revista brasileira de ortopedia‎
  • 2017‎

Bone morphogenetic proteins (BMP) are multi-functional growth factors to promote bone healing with the proposal of less morbidity compared to the usual methods of bone graft harvest. Pseudoarthrosis occur when the fusion attempt fails, a solid fusion is not achieved, or there is motion across the segment leading to it, and it can be clinically symptomatic as pain, deformity, neurocompression, or hardware failure. BMPs are used at spinal fusion as a tool for the treatment of degenerative, traumatic, neoplastic and infectious conditions of the spine. This review shows that the use of BMPS is effective and secure when compared with iliac crest bone graft (ICGB); however, depending of the location of usage (cervical spine, lumbar spine or sacrum) and the medical status of the patient (presence of comorbidities, tobacco usage), it is more likely to exhibit complications. Therefore, the use of these proteins must be an informed decision of patient and physician preferences.


Repulsive guidance molecule (RGM) family proteins exhibit differential binding kinetics for bone morphogenetic proteins (BMPs).

  • Qifang Wu‎ et al.
  • PloS one‎
  • 2012‎

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily that exert their effects via type I and type II serine threonine kinase receptors and the SMAD intracellular signaling pathway to regulate diverse biologic processes. Recently, we discovered that the repulsive guidance molecule (RGM) family, including RGMA, RGMB, and RGMC/hemojuvelin (HJV), function as co-receptors that enhance cellular responses to BMP ligands. Here, we use surface plasmon resonance to quantitate the binding kinetics of RGM proteins for BMP ligands. We show that among the RGMs, HJV exhibits the highest affinity for BMP6, BMP5, and BMP7 with K(D) 8.1, 17, and 20 nM respectively, versus 28, 33, and 166 nM for RGMB, and 55, 83, and 63 nM for RGMA. Conversely, RGMB exhibits preferential binding to BMP4 and BMP2 with K(D) 2.6 and 5.5 nM respectively, versus 4.5 and 9.4 nM for HJV, and 14 and 22 nM for RGMA, while RGMA exhibits the lowest binding affinity for most BMPs tested. Among the BMP ligands, RGMs exhibit the highest relative affinity for BMP4 and the lowest relative affinity for BMP7, while none of the RGMs bind to BMP9. Thus, RGMs exhibit preferential binding for distinct subsets of BMP ligands. The preferential binding of HJV for BMP6 is consistent with the functional role of HJV and BMP6 in regulating systemic iron homeostasis. Our data may help explain the mechanism by which BMPs exert cell-context specific effects via a limited number of type I and type II receptors.


Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

  • Philip Owens‎ et al.
  • PloS one‎
  • 2013‎

Bone Morphogenetic Proteins (BMPs) are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ) superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs) derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs) were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.


Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.

  • Vahan B Indjeian‎ et al.
  • Cell‎
  • 2016‎

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Multi-Omics Analysis Reveals the Pan-Cancer Landscape of Bone Morphogenetic Proteins.

  • Wen-Li Luo‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Bone morphogenetic proteins (BMPs) are widely involved in cancer development. However, a wealth of conflicting data raises the question of whether BMPs serve as oncogenes or as cancer suppressors. MATERIAL AND METHODS By integrating multi-omics data across cancers, we comprehensively analyzed the genomic and pharmacogenomic landscape of BMP genes across cancers. RESULTS Surprisingly, our data indicate that BMPs are globally downregulated in cancers. Further genetics and epigenetics analyses show that this abnormal expression is driven by copy number variations, especially heterozygous amplification. We next assessed the BMP-associated pathways and demonstrated that they suppress cell cycle and estrogen hormone pathways. Bone morphogenetic protein interacts with 58 compounds, and their dysfunction can induce drug sensitivity. CONCLUSIONS Our results define the landscape of the BMP family at a systems level and open potential therapeutic opportunities for cancer patients.


Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins.

  • Maria Vittoria Simonini‎ et al.
  • ASN neuro‎
  • 2010‎

In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.


Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage.

  • Presley Garrison‎ et al.
  • PloS one‎
  • 2017‎

Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers-the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton.


A meta analysis of lumbar spinal fusion surgery using bone morphogenetic proteins and autologous iliac crest bone graft.

  • Haifei Zhang‎ et al.
  • PloS one‎
  • 2014‎

Bone morphogenetic protein (BMPs) as a substitute for iliac crest bone graft (ICBG) has been increasingly widely used in lumbar fusion. The purpose of this study is to systematically compare the effectiveness and safety of fusion with BMPs for the treatment of lumbar disease.


Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins.

  • Jessica C Rivera‎ et al.
  • Frontiers in pharmacology‎
  • 2013‎

Bone morphogenetic proteins (BMPs) other than the clinically available BMP-2 and BMP-7 may be useful for improving fracture healing through both increasing osteogenesis and creating a favorable healing environment by altering cytokine release by endogenous cells. Given the spectrum of potential applications for BMPs, the objective of this study was to evaluate various BMPs under a variety of conditions to provide further insight into their therapeutic capabilities. The alkaline phosphatase (ALP) activity of both C2C12 and human adipose-derived stem cells (hASCs) was measured after exposure of increasing doses of recombinant human BMP-2, -4, -5, -6, -7, or -9 for 3 and 7 days. BMPs-2, -4, -5, -6, -7, and -9 were compared in terms of their ability to affect the release of stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (b-FGF) from human bone marrow stromal cells (hBMSCs). Gene expression of ALP, osteocalcin, SDF-1, VEGF, and b-FGF following shRNA-mediated knockdown of BMP-2 and BMP-6 in hBMSCs or human osteoblasts under osteogenic differentiation conditions was also evaluated. Collectively, BMPs-6 and -9 produced the greatest osteogenic differentiation of C2C12 and hASCs as determined by ALP. The hBMSC secretion of SDF-1 was most affected by BMP-5, VEGF by BMP-4, and b-FGF by BMP-2. The knockdown of BMP-2 in BMSCs had no effect on any of the genes measured whereas BMP-6 knockdown in hBMSCs caused a significant increase in VEGF gene expression. BMP-2 and BMP-6 knockdown in human osteoblasts caused significant increases in VEGF gene expression and trends toward decreases in osteocalcin expression. These findings support efforts to study other BMPs as potential bone graft supplements, and to consider combined BMP delivery for promotion of multiple aspects of fracture healing.


Cationic proteins from eosinophils bind bone morphogenetic protein receptors promoting vascular calcification and atherogenesis.

  • Zhaojie Meng‎ et al.
  • European heart journal‎
  • 2023‎

Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis.


Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction.

  • Maria Kercheva‎ et al.
  • Cells‎
  • 2020‎

Bone morphogenetic proteins-2 and -4 (BMPs) have been implicated in left ventricular remodeling (LVR) processes such as an inflammation and fibrogenesis. We hypothesized that this knowledge could be translated into clinics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: