Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

  • Michael J Breen‎ et al.
  • PloS one‎
  • 2013‎

Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.


Endothelial β-arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia.

  • Saejeong Park‎ et al.
  • Pulmonary circulation‎
  • 2022‎

Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how β-arrestins, intracellular proteins that regulate agonist-mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to β-arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2. We found that β-arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of β-arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. β-arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, β-arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR-II), whose disruption similarly led to an impaired endothelial shear response. β-arrestins also regulated Smad transcription factor phosphorylation by BMPR-II. Mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial β-arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR-II and contribute to vascular development.


Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension.

  • Anne John‎ et al.
  • Gene‎
  • 2015‎

Familial pulmonary arterial hypertension (FPAH) is a relatively rare but fatal disorder characterized by elevated arterial pressure caused by abnormal proliferation of endothelial cells of the arteries, which eventually leads to heart failure and death. FPAH is inherited as an autosomal dominant trait and is caused by heterozygous mutations in the BMPR2 gene encoding the bone morphogenetic protein type II receptor (BMPR2). BMPR2 belongs to the TGF β/BMP super-family of receptors involved in a signal transduction cascade via the SMAD signaling pathway. The BMPR2 polypeptide is composed of 1038 amino acids and consists of a ligand binding domain, a kinase domain and a cytoplasmic tail. To investigate the cellular and functional consequence of BMPR2 mutations, C-terminally FLAG-tagged constructs of eighteen pathogenic BMPR2 missense mutants were generated by site directed mutagenesis and expressed in HeLa and HEK-293T cell lines. The subcellular localizations of the mutant proteins were investigated using immunostaining and confocal microscopy. Post-translational modifications of the proteins were analyzed by Endoglycosidase H deglycosylation assay. Our results indicated that mutations in the ligand binding domain affecting highly conserved cysteine residues resulted in retention of the mutant proteins in the endoplasmic reticulum (ER), as evident from their co-localization with the ER resident protein calnexin. The kinase domain mutants showed both ER and plasma membrane (PM) distributions, while the cytoplasmic tail domain variants were localized exclusively to the PM. The subcellular localizations of the mutants were further confirmed by their characteristic glycosylation profiles. In conclusion, our results indicate that ER quality control (ERQC) is involved in the pathological mechanism of several BMPR2 receptor missense mutations causing FPAH, which can be explored as a potential therapeutic target in the future.


Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor.

  • Ayelet R Amsalem‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and -SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3' terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.


Cationic proteins from eosinophils bind bone morphogenetic protein receptors promoting vascular calcification and atherogenesis.

  • Zhaojie Meng‎ et al.
  • European heart journal‎
  • 2023‎

Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis.


Deletion of the sequence encoding the tail domain of the bone morphogenetic protein type 2 receptor reveals a bone morphogenetic protein 7-specific gain of function.

  • Patricio A Leyton‎ et al.
  • PloS one‎
  • 2013‎

The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.


Bone morphogenetic protein receptor signal transduction in human disease.

  • Maria Catalina Gomez-Puerto‎ et al.
  • The Journal of pathology‎
  • 2019‎

Bone morphogenetic proteins (BMPs) are secreted cytokines that were initially discovered on the basis of their ability to induce bone. Several decades of research have now established that these proteins function in a large variety of physiopathological processes. There are about 15 BMP family members, which signal via three transmembrane type II receptors and four transmembrane type I receptors. Mechanistically, BMP binding leads to phosphorylation of the type I receptor by the type II receptor. This activated heteromeric complex triggers intracellular signaling that is initiated by phosphorylation of receptor-regulated SMAD1, 5, and 8 (also termed R-SMADs). Activated R-SMADs form heteromeric complexes with SMAD4, which engage in specific transcriptional responses. There is convergence along the signaling pathway and, besides the canonical SMAD pathway, BMP-receptor activation can also induce non-SMAD signaling. Each step in the pathway is fine-tuned by positive and negative regulation and crosstalk with other signaling pathways. For example, ligand bioavailability for the receptor can be regulated by ligand-binding proteins that sequester the ligand from interacting with receptors. Accessory co-receptors, also known as BMP type III receptors, lack intrinsic enzymatic activity but enhance BMP signaling by presenting ligands to receptors. In this review, we discuss the role of BMP receptor signaling and how corruption of this pathway contributes to cardiovascular and musculoskeletal diseases and cancer. We describe pharmacological tools to interrogate the function of BMP receptor signaling in specific biological processes and focus on how these agents can be used as drugs to inhibit or activate the function of the receptor, thereby normalizing dysregulated BMP signaling. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development.

  • Carolin Schille‎ et al.
  • BMC developmental biology‎
  • 2016‎

Bone morphogenetic proteins regulate multiple processes in embryonic development, including early dorso-ventral patterning and neural crest development. BMPs activate heteromeric receptor complexes consisting of type I and type II receptor-serine/threonine kinases. BMP receptors Ia and Ib, also known as ALK3 and ALK6 respectively, are the most common type I receptors that likely mediate most BMP signaling events. Since early expression patterns and functions in Xenopus laevis development have not been described, we have addressed these questions in the present study.


Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation.

  • Ming Zhao‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Functions of bone morphogenetic proteins (BMPs) are initiated by signaling through specific type I and type II serine/threonine kinase receptors. In previous studies, we have demonstrated that the type IB BMP receptor (BMPR-IB) plays an essential and specific role in osteoblast commitment and differentiation. To determine the role of BMP receptor signaling in bone formation in vivo, we generated transgenic mice, which express a truncated dominant-negative BMPR-IB targeted to osteoblasts using the type I collagen promoter. The mice are viable and fertile. Tissue-specific expression of the truncated BMPR-IB was demonstrated. Characterization of the phenotype of these transgenic mice showed impairment of postnatal bone formation in 1-mo-old homozygous transgenic mice. Bone mineral density, bone volume, and bone formation rates were severely reduced, but osteoblast and osteoclast numbers were not significantly changed in the transgenic mice. To determine whether osteoblast differentiation is impaired, we used primary osteoblasts isolated from the transgenic mice and showed that BMP signaling is blocked and BMP2-induced mineralized bone matrix formation was inhibited. These studies show the effects of alterations in BMP receptor function targeted to the osteoblast lineage and demonstrate a necessary role of BMP receptor signaling in postnatal bone growth and bone formation in vivo.


Bone morphogenetic protein receptor expressions in the adult rat brain.

  • M Miyagi‎ et al.
  • Neuroscience‎
  • 2011‎

Bone morphogenetic proteins (BMP) are members of the transforming growth factor β (TGF-β) superfamily. BMPs exert its biological functions by interacting with membrane bound receptors belonging to the serine/threonine kinase family including bone morphogenetic protein receptor I (BMPRIA, BMPRIB) and type II (BMPRII). Although BMPR expressions have been well described in the early development of the CNS, little information is available for their expressions in the adult CNS. We, thus, investigated BMPR expressions in the adult rat CNS using immunohistochemistry. Here, we show that BMPRIA, IB and II proteins are widely expressed throughout the adult CNS. Interestingly, we observed that BMPRIA, IB and II proteins are abundantly expressed in many kinds of axons. In addition, we found that BAMRIB-IR was preferentially expressed in dendrites of many neurons throughout the CNS, while BMPRIA was mainly expressed in cell bodies, showing that BMPRIA and BMPRIB are differentially targeted in a single neuron. In addition, besides abundant BMPR expressions in neurons, we exhibited BMPR expressions in astrocytes and ependymal cells. These data indicate that BMPRs are more widely expressed throughout the adult CNS than previously reported, and their continued abundant expressions in the adult brain strongly support the idea that BMPRs play pivotal roles also in the adult brain.


Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis.

  • Zhenquan Wei‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes.


Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling.

  • Chen Xie‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Activins transduce the TGF-β pathway through a heteromeric signaling complex consisting of type I and type II receptors, and activins also inhibit bone morphogenetic protein (BMP) signaling mediated by type I receptor ALK2. Recent studies indicated that activin A cross-activates the BMP pathway through ALK2R206H, a mutation associated with Fibrodysplasia Ossificans Progressiva (FOP). How activin A inhibits ALK2WT-mediated BMP signaling but activates ALK2R206H-mediated BMP signaling is not well understood, and here we offer some insights into its molecular mechanism. We first demonstrated that among four BMP type I receptors, ALK2 is the only subtype able to mediate the activin A-induced BMP signaling upon the dissociation of FKBP12. We further showed that BMP4 does not cross-signal TGF-β pathway upon FKBP12 inhibition. In addition, although the roles of type II receptors in the ligand-independent BMP signaling activated by FOP-associated mutant ALK2 have been reported, their roles in activin A-induced BMP signaling remains unclear. We demonstrated in this study that the known type II BMP receptors contribute to activin A-induced BMP signaling through their kinase activity. Together, the current study provided important mechanistic insights at the molecular level into further understanding physiological and pathophysiological BMP signaling.


Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

  • Tina L Gumienny‎ et al.
  • PLoS genetics‎
  • 2010‎

Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.


Bone Morphogenetic Protein-4 (BMP4): A Paracrine Regulator of Human Adrenal C19 Steroid Synthesis.

  • Juilee Rege‎ et al.
  • Endocrinology‎
  • 2015‎

Bone morphogenetic proteins (BMPs) comprise one of the largest subgroups in the TGF-β ligand superfamily. We have identified a functional BMP system equipped with the ligand (BMP4), receptors (BMP type II receptor, BMP type IA receptor, also called ALK3) and the signaling proteins, namely the mothers against decapentaplegic homologs 1, 4, and 5 in the human adrenal gland and the human adrenocortical cell line H295R. Microarray, quantitative RT-PCR, and immunohistochemistry confirmed that BMP4 expression was highest in the adrenal zona glomerulosa followed by the zona fasciculata and zona reticularis. Treatment of H295R cells with BMP4 caused phosphorylation of the mothers against decapentaplegic and a profound decrease in synthesis of the C19 steroids dehydroepiandrosterone (DHEA), DHEA sulfate, and androstenedione. Administration of BMP4 to cultures of H295R cells also caused a profound decrease in the mRNA and protein levels of 17α-hydroxylase/17,20-lyase (CYP17A1 and P450c17, respectively) but no significant effect on the mRNA levels of cholesterol side-chain cleavage cytochrome P450 (CYP11A1) or type 2 3β-hydroxysteroid dehydrogenase (HSD3B2). Furthermore, Noggin (a BMP inhibitor) was able to reverse the negative effects of BMP4 with respect to both CYP17A1 transcription and DHEA secretion in the H295R cell line. Collectively the present data suggest that BMP4 is an autocrine/paracrine negative regulator of C19 steroid synthesis in the human adrenal and works by suppressing P450c17.


Aldosterone enhances progesterone biosynthesis regulated by bone morphogenetic protein in rat granulosa cells.

  • Yasuhiro Nakano‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2020‎

Aldosterone (Aldo) is involved in various cardiovascular diseases such as hypertension and heart failure. Aldo levels are known to be increased in patients with polycystic ovary syndrome, and expression of the mineralocorticoid receptor (MR) has also been detected in the ovary. However, the effect of Aldo on reproductive function has yet to be elucidated. Here, we examined the effects of Aldo on follicular steroidogenesis using primary culture of rat granulosa cells by focusing on the ovarian bone morphogenetic protein (BMP) system acting as a luteinizing inhibitor. We found that Aldo treatment increased FSH-induced progesterone production in a concentration-responsive manner. Consistent with the effects on steroidogenesis, Aldo increased mRNA levels of progesterogenic factor and enzymes including StAR and P450scc, whereas Aldo failed to change FSH-induced estradiol and cAMP synthesis or P450arom expression by granulosa cells. Progesterone production and StAR expression induced by FSH and Aldo were reversed by co-treatment with spironolactone, suggesting the involvement of geonomic MR action. Aldo treatment attenuated Smad1/5/9 phosphorylation and Id1 transcription induced by BMP-6. Furthermore, Aldo enhanced the expression of inhibitory Smad6 in the presence of BMP-6. In addition, BMP-6 downregulated MR expression, while Aldo modulated the mRNA levels of endogenous BMP-6 and BMP type-II receptors, indicating the existence of a feedback loop between the BMP system and MR in granulosa cells.  Collectively, the results indicated that Aldo predominantly enhances FSH-induced progesterone production by inhibiting BMP-Smad signaling, suggesting a novel role of Aldo in ovarian steroidogenesis and a functional link between MR and BMP pathways in granulosa cells.


Bone morphogenetic protein 2 stimulates noncanonical SMAD2/3 signaling via the BMP type 1A receptor in gonadotrope-like cells: implications for FSH synthesis.

  • Ying Wang‎ et al.
  • Endocrinology‎
  • 2014‎

FSH is an essential regulator of mammalian reproduction. Its synthesis by pituitary gonadotrope cells is regulated by multiple endocrine and paracrine factors, including TGFβ superfamily ligands, such as the activins and inhibins. Activins stimulate FSH synthesis via transcriptional regulation of its β-subunit gene (Fshb). More recently, bone morphogenetic proteins (BMPs) were shown to stimulate murine Fshb transcription alone and in synergy with activins. BMP2 signals via its canonical type I receptor, BMPR1A (or activin receptor-like kinase 3 [ALK3]), and SMAD1 and SMAD5 to stimulate transcription of inhibitor of DNA binding proteins. Inhibitor of DNA binding proteins then potentiate the actions of activin-stimulated SMAD3 to regulate the Fshb gene in the gonadotrope-like LβT2 cell line. Here, we report the unexpected observation that BMP2 also stimulates the SMAD2/3 pathway in these cells and that it does so directly via ALK3. Indeed, this novel, noncanonical ALK3 activity is completely independent of ALK4, ALK5, and ALK7, the type I receptors most often associated with SMAD2/3 pathway activation. Induction of the SMAD2/3 pathway by ALK3 is dependent upon its own previous activation by associated type II receptors, which phosphorylate conserved serine and threonine residues in the ALK3 juxtamembrane glycine-serine-rich domain. ALK3 signaling via SMAD3 is necessary for the receptor to stimulate Fshb transcription, whereas its activation of the SMAD1/5/8 pathway alone is insufficient. These data challenge current dogma that ALK3 and other BMP type I receptors signal via SMAD1, SMAD5, and SMAD8 and not SMAD2 or SMAD3. Moreover, they suggest that BMPs and activins may use similar intracellular signaling mechanisms to activate the murine Fshb promoter in immortalized gonadotrope-like cells.


Bone Morphogenetic Protein 2 Promotes Human Trophoblast Cell Invasion by Inducing Activin A Production.

  • Hong-Jin Zhao‎ et al.
  • Endocrinology‎
  • 2018‎

Bone morphogenetic protein (BMP) 2 and activin A belong to the TGF-β superfamily and are highly expressed in human endometrium and placenta. Studies have demonstrated that activin A and BMP2 play essential roles in the process of early embryo implantation by promoting human trophoblast cell invasion. However, whether activin A production can be regulated by BMP2 in human trophoblast cells remains unknown. The aim of our study was to determine the effects of BMP2 on activin A production and its role in human trophoblast invasion. Primary human extravillous trophoblast (EVT) cells were used as study models. BMP2 treatment significantly increased inhibin βA (INHBA) mRNA levels and activin A production without altering inhibin α and inhibin βB levels. BMP2-induced EVT cell invasion was attenuated by knockdown of INHBA. The increased INHBA transcription and activin A production by BMP2 were blocked by the type I receptor activin receptor (ACVR)-like kinase 2 (ALK2) and activin receptor-like kinase 3 (ALK3) inhibitor dorsomorphin homolog 1 (DMH-1). BMP2-induced INHBA upregulation was also inhibited by knockdown of type I receptor ALK3 or combined knockdown of type II receptors for BMP2 (BMPR2) and ACVR2A. Whereas BMP2 initiated both canonical SMAD1/5/8 and noncanonical SMAD2/3 signaling, only knockdown of SMAD4, but not SMAD2 and SMAD3, abolished the effects of BMP2 on INHBA. Our results show that BMP2 increases human trophoblast invasion by upregulating INHBA and activin A production via ALK3-BMPR2/ACVR2A-SMAD1/5/8-SMAD4 signaling.


Bone Morphogenetic Protein-2 Signaling in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Induced by Pulsed Electromagnetic Fields.

  • Fernanda Martini‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Pulsed electromagnetic fields (PEMFs) are clinically used with beneficial effects in the treatment of bone fracture healing. This is due to PEMF ability to favor the osteogenic differentiation of mesenchymal stem cells (MSCs). Previous studies suggest that PEMFs enhance the osteogenic activity of bone morphogenetic protein-2 (BMP2) which is used in various therapeutic interventions. This study investigated the molecular events associated to the synergistic activity of PEMFs and BMP2 on osteogenic differentiation. To this aim, human MSCs (hMSCs) were exposed to PEMFs (75 Hz, 1.5 mT) in combination with BMP2, upon detection of the minimal dose able to induce differentiation. Changes in the expression of BMP signaling pathway genes including receptors and ligands, as well as in the phosphorylation of BMP downstream signaling proteins, such as SMAD1/5/8 and MAPK, were analyzed. Results showed the synergistic activity of PEMFs and BMP2 on osteogenic differentiation transcription factors and markers. The PEMF effects were associated to the increase in BMP2, BMP6, and BMP type I receptor gene expression, as well as SMAD1/5/8 and p38 MAPK activation. These results increase knowledge concerning the molecular events involved in PEMF stimulation showing that PEMFs favor hMSCs osteogenic differentiation by the modulation of BMP signaling components.


Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages.

  • D Chen‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Cumulative evidence indicates that osteoblasts and adipocytes share a common mesenchymal precursor and that bone morphogenetic proteins (BMPs) can induce both osteoblast and adipocyte differentiation of this precursor. In the present study, we investigated the roles of BMP receptors in differentiation along these separate lineages using a well-characterized clonal cell line, 2T3, derived from the mouse calvariae. BMP-2 induced 2T3 cells to differentiate into mature osteoblasts or adipocytes depending upon culture conditions. To test the specific roles of the type IA and IB BMP receptor components, truncated and constitutively active type IA and IB BMP receptor cDNAs were stably expressed in these cells. Overexpression of truncated type IB BMP receptor (trBMPR-IB) in 2T3 cells completely blocked BMP-2-induced osteoblast differentiation and mineralized bone matrix formation. Expression of trBMPR-IB also blocked mRNA expression of the osteoblast specific transcription factor, Osf2/ Cbfa1, and the osteoblast differentiation-related genes, alkaline phosphatase (ALP) and osteocalcin (OC). BMP-2-induced ALP activity could be rescued by transfection of wild-type (wt) BMPR-IB into 2T3 clones containing trBMPR-IB. Expression of a constitutively active BMPR-IB (caBMPR-IB) induced formation of mineralized bone matrix by 2T3 cells without addition of BMP-2. In contrast, overexpression of trBMPR-IA blocked adipocyte differentiation and expression of caBMPR-IA induced adipocyte formation in 2T3 cells. Expression of the adipocyte differentiation-related genes, adipsin and PPARgamma, correlated with the distinct phenotypic changes found after overexpression of the appropriate mutant receptors. These results demonstrate that type IB and IA BMP receptors transmit different signals to bone-derived mesenchymal progenitors and play critical roles in both the specification and differentiation of osteoblasts and adipocytes.


Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance.

  • Catherine Zabkiewicz‎ et al.
  • Endocrine-related cancer‎
  • 2017‎

Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: