Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26,033 papers

CCN3 and bone marrow cells.

  • Ken-Ichi Katsube‎ et al.
  • Journal of cell communication and signaling‎
  • 2009‎

CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.


Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells.

  • Hotaka Kawai‎ et al.
  • JBMR plus‎
  • 2023‎

Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.


Fabrication of bone marrow-like tissue in vitro from dispersed-state bone marrow cells.

  • Kanae Sayo‎ et al.
  • Regenerative therapy‎
  • 2016‎

A three-dimensional (3D) bone marrow (BM) culture system may facilitate research into the molecular mechanisms involved in hematopoiesis and BM diseases. However, because >90% of BM cells are composed of non-adherent blood cells, it is difficult to organize the dispersed BM cells into 3D multicellular spheroids using conventional aggregation methods such as hanging drop, and rotary shaking culture. The objective of this study was to reproduce BM-like tissue. We reported successful formation of BM aggregates using a 3% methylcellulose (MC) medium. This medium could aggregate even non-adherent materials. In MC medium, BM cells formed tissue-like aggregates within 24 h. Although the cell density of the BM-like tissue is slightly low, sections of the organoids resembled those of intact BM tissue. Cells of the BM-like tissue were approximately 70% viable after 7 days in culture. Staining for CD68, PDGFRα, and CXCL12 indicated that the BM-like tissue contained macrophages, and mesenchymal cells including CXCL12-abundant reticular cells. These results indicated that the method using MC medium effectively reconstitutes the BM-like tissue.


Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

  • Luis Rodriguez-Menocal‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds.


A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

  • Fernanda M Marim‎ et al.
  • PloS one‎
  • 2010‎

The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.


Isolation of human bone marrow stromal cells from bone marrow biopsies for single-cell RNA sequencing.

  • Hélène F E Gleitz‎ et al.
  • STAR protocols‎
  • 2021‎

Bone marrow (BM) mesenchymal stromal cells play an important role in regulating stem cell quiescence and homeostasis; they are also key contributors to various hematological malignancies. However, human bone marrow stromal cells are difficult to isolate and prone to damage during isolation. This protocol describes a combination of mechanical and enzymatic isolation of BM stromal cells from human BM biopsies, followed by FACS sorting to separate stromal sub-populations including mesenchymal stromal cells, fibroblasts, and Schwann cells for single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Leimkühler et al. (2020).


Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability.

  • Hirokatsu Sawada‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2023‎

Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model.


Bone Lining Cells Could Be Sources of Bone Marrow Adipocytes.

  • Ji Yeon Lee‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Recently, lineage-tracing studies demonstrated that parathyroid hormone and anti-sclerostin antibody (Scl-Ab) can convert bone lining cells (BLCs) into active osteoblasts. However, BLCs might also be differentiated into other lineages. Here we investigated whether BLCs could differentiate into bone marrow adipocytes (BMAds) and whether Scl-Ab could suppress this process.


Bone marrow T cells are superior to splenic T cells to induce chimeric conversion after non-myeloablative bone marrow transplantation.

  • Hyun-Sil Park‎ et al.
  • The Korean journal of internal medicine‎
  • 2009‎

The bone marrow functions not only as the primary B-lymphocyte-producing organ but also as a secondary lymphoid organ for CD4 and CD8 cell responses and a site of preferential homing and persistence for memory T cells. Bone marrow T (BM-T) cells are distinguished from peripheral blood T cells by surface phenotype, cytokine secretion profile, and immune functions. In this study, we evaluated the alloreactive potential of donor lymphocyte infusion (DLI) using BM-T cells in mixed chimerism compared to that using spleen T (SP-T) cells.


Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow.

  • Francesco Siracusa‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

The bone marrow maintains memory CD4 T cells, which provide memory to systemic antigens. Here we demonstrate that memory CD4 T cells are reactivated by antigen in the bone marrow. In a secondary immune response, antigen-specific T cells of the bone marrow mobilize and aggregate in immune clusters together with MHC class II-expressing cells, mostly B lymphocytes. They proliferate vigorously and express effector cytokines, but they do not develop into follicular T-helper cells. Neither do the B lymphocytes develop into germinal center B cells in the bone marrow. Within 10 days, the immune clusters disappear again. Within 30 days, the expanded antigen-specific memory CD4 T cells return to memory niches and are maintained again individually as resting cells. Thus, in secondary immune responses in the bone marrow T-cell memory is amplified, while in germinal center reactions of secondary lymphoid organs humoral memory is adapted by affinity maturation.


Feasibility of bone marrow mesenchymal stem cells harvesting from forearm bone.

  • Tulyapruek Tawonsawatruk‎ et al.
  • Heliyon‎
  • 2021‎

Mesenchymal stem cell is a promising therapeutic option in orthopedic filed and regenerative medicine. The feasibility of isolation method and characterization of Mesenchymal stem cell including growth kinetics, immunophenotypes and differentiation potency from small volume aspiration harvested from ulna and radius should be evaluated in order to utilize this cell in hand surgery.


Systemically transplanted bone marrow stromal cells contributing to bone tissue regeneration.

  • S Li‎ et al.
  • Journal of cellular physiology‎
  • 2008‎

Bone marrow stromal cells (BMSCs) are a rich source of osteogenic progenitor cells. A fundamental question is whether systemically transplanted BMSCs participate in bone regeneration. Luciferase and GFP double-labeled BMSCs were transplanted into irradiated mice. Five weeks after transplantation, artificial bone wounds were created in the mandibles and calvaria of the recipients. Animals were sacrificed at weeks 2, 4, and 6 after surgery and the expressions of luciferase and GFP were determined using Xenogen IVIS Imaging System, immunohistochemical staining and RT-PCR. The results demonstrated that transplanted BMSCs can be detected in wound sites as early as 2 weeks and lasted the whole experimental period. Luciferase expression peaked at 2 weeks after surgery and decreased thereafter, exhibiting a similar expression pattern as that of BSP, while GFP expression was relatively stable during the experimental period. In conclusion, BMSCs can migrate to bone wound sites and participate in bone regeneration in orocraniofacial region.


Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis.

  • Ludovic Maertens‎ et al.
  • PloS one‎
  • 2014‎

It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2.


Bone marrow stem cells: current and emerging concepts.

  • Simón Méndez-Ferrer‎ et al.
  • Annals of the New York Academy of Sciences‎
  • 2015‎

The interactions of stromal cells with hematopoietic cells in the bone marrow have long been a subject of research, but only recently have technologies allowed us to dissect them at the stem cell level. On the other hand, limitations of these technical tools might explain numerous discrepancies in this field. It is becoming increasingly clear that mesenchymal stem cells (MSCs) represent an important component of the hematopoietic stem cell (HSC) niche in the bone marrow. However, there is heterogeneity among HSCs, and many putatively different mesenchymal progenitors identified in the bone marrow using Cre recombinase-driven mouse lines seem to exhibit HSC niche properties. Development of better reporter lines has demonstrated that some of these Cre lines do not always specifically mark the expected cells. Also, characterization of different cell populations has often been partial, and issues of redundancy and compensation might explain apparently contradictory results. Recognizing and overcoming these limitations, while also clearly defining the distinctions between subgroups of mesenchymal cells, will be essential to advance the field.


Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain.

  • Yul Huh‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Current treatments for chronic pain, such as inflammatory pain, neuropathic pain, and cancer pain are insufficient and cause severe side effects. Mounting evidence suggests that neuroinflammation in the peripheral and central nervous system (PNS and CNS) plays a pivotal role in the genesis and maintenance of chronic pain. Characteristic features of neuroinflammation in chronic pain conditions include infiltration of immune cells into the PNS [e.g., the sciatic nerve and dorsal root ganglion (DRG)], activation of glial cells such as microglia and astrocytes in the CNS (spinal cord and brain), and production and secretion of pro-inflammatory cytokines and chemokines [TNF, interleukin (IL)-1β, IL-6, CCL2, and CXCL1]. Recent studies suggest that bone marrow stem cells or bone marrow stromal cells (BMSCs) produce powerful analgesic effects in animal models of inflammatory pain, neuropathic pain, and cancer pain. We recently demonstrated that intrathecal injection of BMSCs resulted in a long-term relief of neuropathic pain for several weeks after peripheral nerve injury. Strikingly, this analgesic effect is mediated by the anti-inflammatory cytokine transforming growth factor beta secreted from BMSCs. Additionally, BMSCs exhibit potent modulation of neuroinflammation, by inhibiting monocyte infiltration, glial activation, and cytokine/chemokine production in the DRG and spinal cord. Thus, BMSCs control chronic pain by regulation of neuroinflammation in the PNS and CNS via paracrine signaling. In this review, we discuss the similar results from different laboratories of remarkable anti-nociceptive efficacy of BMSCs in animal and clinical studies. We also discuss the mechanisms by which BMSCs control neuroinflammation and chronic pain and how these cells specifically migrate to damaged tissues.


Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells.

  • Hui-Won Park‎ et al.
  • Immune network‎
  • 2020‎

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.


Leukemia cells induce changes in human bone marrow stromal cells.

  • Sara Civini‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-γ and TNF-α change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs.


Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation.

  • Fangjing Wang‎ et al.
  • Journal of stem cells & regenerative medicine‎
  • 2015‎

Mesenchymal stromal cells (MSCs) have shown promise as treatment for graft-versus-host disease (GvHD) following allogeneic bone marrow transplantation (alloBMT). Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs) were injected via carotid artery (IA) or tail vein (TV) into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI) using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [(99m)Tc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole-body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.


Comparison of endometrial regenerative cells and bone marrow stromal cells.

  • Huan Wang‎ et al.
  • Journal of translational medicine‎
  • 2012‎

Endometrial regenerative cells (ERC) and bone marrow stromal cells (BMSC) are being used in clinical trials. While they have been reported to have similar characteristics, they have not been directly compared.


Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

  • Yuan Zhang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: