Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The glypican 3-hosted murine mir717 gene: sequence conservation, seed region polymorphisms and putative targets.

  • Tanja Kunej‎ et al.
  • International journal of biological sciences‎
  • 2010‎

Mir717 (mmu-mir-717) was first reported in mouse and resides in the intron 3 of glypican 3 (Gpc3) gene. Our present study revealed that this microRNA (miRNA) gene is conserved among 26 mammalian species and harbors polymorphic sites within the mature seed region in mice. Our finding represents a rare four layer genomic overlap consisting of growth associated quantitative trait locus (QTL), body mass associated Gpc3 gene, highly conserved miRNA gene and mature miRNA seed single nucleotide polymorphism (SNP) identified in the lean mouse strain 129/Sv. Additionally, genes potentially targeted by Mir717 include 91 genes associated with obesity and related phenotypes in mammals. Our analysis provides a basis for further experiments to causally connect the identified SNP and Mir717 gene itself to obesity regulation. Furthermore, our bioinformatics analysis now enables functional annotation of Mir717 orthologs in other species, thus determining the effect of its target genes on fat-related traits.


Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.

  • Kalevi Trontti‎ et al.
  • RNA (New York, N.Y.)‎
  • 2018‎

Diversity in the structure and expression of microRNAs, important regulators of gene expression, arises from SNPs, duplications followed by divergence, production of isomiRs, and RNA editing. Inbred mouse strains and crosses using them are important reference populations for genetic mapping, and as models of human disease. We determined the nature and extent of interstrain miRNA variation by (i) identifying miRNA SNPs in whole-genome sequence data from 36 strains, and (ii) examining miRNA editing and expression in hippocampus (Hpc) and frontal cortex (FCx) of six strains, to facilitate the study of miRNAs in neurobehavioral phenotypes. miRNA loci were strongly conserved among the 36 strains, but even the highly conserved seed region contained 16 SNPs. In contrast, we identified RNA editing in 58.9% of miRNAs, including 11 consistent editing events in the seed region. We confirmed the functional significance of three conserved edits in the miR-379/410 cluster, demonstrating that edited miRNAs gained novel target mRNAs not recognized by the unedited miRNAs. We found significant interstrain differences in miRNA and isomiR expression: Of 779 miRNAs expressed in Hpc and 719 in FCx, 262 were differentially expressed (190 in Hpc, 126 in FCx, 54 in both). We also identified 32 novel miRNA candidates using miRNA prediction tools. Our studies provide the first comprehensive analysis of SNP, isomiR, and RNA editing variation in miRNA loci across inbred mouse strains, and a detailed catalog of expressed miRNAs in Hpc and FCx in six commonly used strains. These findings will facilitate the molecular analysis of neurological and behavioral phenotypes in this model organism.


The future of osteoarthritis therapeutics: emerging biological therapy.

  • A Mobasheri‎
  • Current rheumatology reports‎
  • 2013‎

Biological therapy is a thriving area of research and development, and is well established for chronic forms of rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, there is no clinically validated biological therapy for osteoarthritis (OA). Chronic forms of OA are increasingly viewed as an inflammatory disease. OA was largely regarded as a "wear and tear disease". However, the disease is now believed to involve "low grade" inflammation and the growth of blood vessels and nerves from the subchondral bone into articular cartilage. This realization has focused research effort on the development and evaluation of biological therapy that targets proinflammatory mediators, angiogenic factors and cytokines in articular cartilage, subchondral bone and synovium in chronic forms of OA. This review article provides an overview of emerging biological therapy for OA, and discusses recent molecular targets implicated in angiogenesis and neurogenesis and progress with antibody-based therapy, calcitonin, and kartogenin, the small molecule stimulator of chondrogenesis.


Natural genetic variation of integrin alpha L (Itgal) modulates ischemic brain injury in stroke.

  • Sehoon Keum‎ et al.
  • PLoS genetics‎
  • 2013‎

During ischemic stroke, occlusion of the cerebrovasculature causes neuronal cell death (infarction), but naturally occurring genetic factors modulating infarction have been difficult to identify in human populations. In a surgically induced mouse model of ischemic stroke, we have previously mapped Civq1 to distal chromosome 7 as a quantitative trait locus determining infarct volume. In this study, genome-wide association mapping using 32 inbred mouse strains and an additional linkage scan for infarct volume confirmed that the size of the infarct is determined by ancestral alleles of the causative gene(s). The genetically isolated Civq1 locus in reciprocal recombinant congenic mice refined the critical interval and demonstrated that infarct size is determined by both vascular (collateral vessel anatomy) and non-vascular (neuroprotection) effects. Through the use of interval-specific SNP haplotype analysis, we further refined the Civq1 locus and identified integrin alpha L (Itgal) as one of the causative genes for Civq1. Itgal is the only gene that exhibits both strain-specific amino acid substitutions and expression differences. Coding SNPs, a 5-bp insertion in exon 30b, and increased mRNA and protein expression of a splice variant of the gene (Itgal-003, ENSMUST00000120857), all segregate with infarct volume. Mice lacking Itgal show increased neuronal cell death in both ex vivo brain slice and in vivo focal cerebral ischemia. Our data demonstrate that sequence variation in Itgal modulates ischemic brain injury, and that infarct volume is determined by both vascular and non-vascular mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: