Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 12,564 papers

Insights into body size variation in cetaceans from the evolution of body-size-related genes.

  • Yingying Sun‎ et al.
  • BMC evolutionary biology‎
  • 2019‎

Cetaceans exhibit an exceptionally wide range of body size, yet in this regard, their genetic basis remains poorly explored. In this study, 20 body-size-related genes for which duplication, mutation, or deficiency can cause body size change in mammals were chosen to preliminarily investigate the evolutionary mechanisms underlying the dramatic body size variation in cetaceans.


Big number, big body: Jersey numbers alter body size perception.

  • Leon T Shams‎ et al.
  • PloS one‎
  • 2023‎

Vision has been shown to be an active process that can be shaped by top-down influences. Here, we add to this area of research by showing a surprising example of how visual perception can be affected by cognition (i.e., cognitive penetration). Observers were presented, on each trial, with a picture of a computer-generated football player and asked to rate the slenderness of the player on an analog scale. The results of two experiments showed that observers perceived athletes wearing small jersey numbers as more slender than those with high numbers. This finding suggests that the cognition of numbers quantitatively alters body size perception. We conjecture that this effect is the result of previously learned associations (i.e., prior expectations) affecting perceptual inference. Such associations are likely the result of implicit learning of the statistical regularities of number and size attributes co-occurrences by the nervous system. We discuss how these results are consistent with previous research on statistical learning and how they fit into the Bayesian framework of perception. The current finding supports the notion of top-down influences of cognition on perception.


Bison body size and climate change.

  • Jeff M Martin‎ et al.
  • Ecology and evolution‎
  • 2018‎

The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24-18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short-term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.


Body size determines eyespot size and presence in coral reef fishes.

  • Christopher R Hemingson‎ et al.
  • Ecology and evolution‎
  • 2020‎

Numerous organisms display conspicuous eyespots. These eye-like patterns have been shown to effectively reduce predation by either deflecting strikes away from nonvital organs or by intimidating potential predators. While investigated extensively in terrestrial systems, determining what factors shape eyespot form in colorful coral reef fishes remains less well known. Using a broadscale approach we ask: How does the size of the eyespot relate to the actual eye, and at what size during ontogeny are eyespots acquired or lost? We utilized publicly available images to generate a dataset of 167 eyespot-bearing reef fish species. We measured multiple features relating to the size of the fish, its eye, and the size of its eyespot. In reef fishes, the area of the eyespot closely matches that of the real eye; however, the eyespots "pupil" is nearly four times larger than the real pupil. Eyespots appear at about 20 mm standard length. However, there is a marked decrease in the presence of eyespots in fishes above 48 mm standard length; a size which is tightly correlated with significant decreases in documented mortality rates. Above 75-85 mm, the cost of eyespots appears to outweigh their benefit. Our results identify a "size window" for eyespots in coral reef fishes, which suggests that eyespot use is strictly body size-dependent within this group.


Genetic architecture of body size in mammals.

  • Kathryn E Kemper‎ et al.
  • Genome biology‎
  • 2012‎

Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies.


Pathways involved in pony body size development.

  • Jun Fang‎ et al.
  • BMC genomics‎
  • 2021‎

The mechanism of body growth in mammals is poorly understood. Here, we investigated the regulatory networks involved in body growth through transcriptomic analysis of pituitary and epiphyseal tissues of smaller sized Debao ponies and Mongolian horses at the juvenile and adult stages.


Body Size Adaptation Alters Perception of Test Stimuli, Not Internal Body Image.

  • Klaudia B Ambroziak‎ et al.
  • Frontiers in psychology‎
  • 2019‎

Recent studies have reported that adaptation to extreme body types produces aftereffects on judgments of body normality and attractiveness, and also judgments of the size and shape of the viewer's own body. This latter effect suggests that adaptation could constitute an experimental model of media influences on body image. Alternatively, adaptation could affect perception of test stimuli, which should produce the same aftereffects for judgments about participant's own body or someone else's body. Here, we investigated whether adaptation similarly affects judgments about one's body and other bodies. We were interested in participants' own body image judgments, i.e., we wanted to measure the mental representations to which the test stimuli were compared and not the perception of test stimuli per se. Participants were adapted to pictures of thin or fat bodies and then rated whether bodies were fatter or thinner than either: their own body, an average body (Experiment 1), or the body of another person (Experiments 2 and 3). By keeping the visual stimuli constant but changing the task/type of judgment, i.e., the internal criterion participants are asked to judge the bodies against, we investigated how adaptation affects different stored representations of bodies, specifically own body image vs. representations of others. After adaptation, a classic aftereffect was found, with judgments biased away from the adapting stimulus. Critically, aftereffects were nearly identical for judgments of one's own body and for other people's bodies. These results suggest that adaptation affects body representations in a generic way and may not be specific to the own body image.


Association Between Body Size Phenotypes and Subclinical Atherosclerosis.

  • Xavier Rossello‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

The underlying relationship between body mass index (BMI), cardiometabolic disorders, and subclinical atherosclerosis is poorly understood.


Large-scale ocean connectivity and planktonic body size.

  • Ernesto Villarino‎ et al.
  • Nature communications‎
  • 2018‎

Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.


Convergence in reduced body size, head size, and blood glucose in three island reptiles.

  • Amanda M Sparkman‎ et al.
  • Ecology and evolution‎
  • 2018‎

Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles-two snakes and one lizard-in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.


Population variability under stressors is dependent on body mass growth and asymptotic body size.

  • Leonie Färber‎ et al.
  • Royal Society open science‎
  • 2020‎

The recruitment and biomass of a fish stock are influenced by their environmental conditions and anthropogenic pressures such as fishing. The variability in the environment often translates into fluctuations in recruitment, which then propagate throughout the stock biomass. In order to manage fish stocks sustainably, it is necessary to understand their dynamics. Here, we systematically explore the dynamics and sensitivity of fish stock recruitment and biomass to environmental noise. Using an age-structured and trait-based model, we explore random noise (white noise) and autocorrelated noise (red noise) in combination with low to high levels of harvesting. We determine the vital rates of stocks covering a wide range of possible body mass (size) growth rates and asymptotic size parameter combinations. Our study indicates that the variability of stock recruitment and biomass are probably correlated with the stock's asymptotic size and growth rate. We find that fast-growing and large-sized fish stocks are likely to be less vulnerable to disturbances than slow-growing and small-sized fish stocks. We show how the natural variability in fish stocks is amplified by fishing, not just for one stock but for a broad range of fish life histories.


Past visual experiences weigh in on body size estimation.

  • Joanna Alexi‎ et al.
  • Scientific reports‎
  • 2018‎

Body size is a salient marker of physical health, with extremes implicated in various mental and physical health issues. It is therefore important to understand the mechanisms of perception of body size of self and others. We report a novel technique we term the bodyline, based on the numberline technique in numerosity studies. One hundred and three young women judged the size of sequentially presented female body images by positioning a marker on a line, delineated with images of extreme sizes. Participants performed this task easily and well, with average standard deviations less than 6% of the total scale. Critically, judgments of size were biased towards the previously viewed body, demonstrating that serial dependencies occur in the judgment of body size. The magnitude of serial dependence was well predicted by a simple Kalman-filter ideal-observer model, suggesting that serial dependence occurs in an optimal, adaptive way to improve performance in size judgments.


ACL Size, but Not Signal Intensity, Is Influenced by Sex, Body Size, and Knee Anatomy.

  • Samuel C Barnett‎ et al.
  • Orthopaedic journal of sports medicine‎
  • 2021‎

Little is known about sex-based differences in anterior cruciate ligament (ACL) tissue quality in vivo or the association of ACL size (ie, volume) and tissue quality (ie, normalized signal intensity on magnetic resonance imaging [MRI]) with knee anatomy.


Body size correlates with fertilization success but not gonad size in grass goby territorial males.

  • Jose Martin Pujolar‎ et al.
  • PloS one‎
  • 2012‎

In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.


Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

  • John P Wilson‎ et al.
  • PloS one‎
  • 2016‎

Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.


Body size information in large-scale acoustic bat databases.

  • Caterina Penone‎ et al.
  • PeerJ‎
  • 2018‎

Citizen monitoring programs using acoustic data have been useful for detecting population and community patterns. However, they have rarely been used to study broad scale patterns of species traits. We assessed the potential of acoustic data to detect broad scale patterns in body size. We compared geographical patterns in body size with acoustic signals in the bat species Pipistrellus pipistrellus. Given the correlation between body size and acoustic characteristics, we expected to see similar results when analyzing the relationships of body size and acoustic signals with climatic variables.


DNA methylation Landscape of body size variation in sheep.

  • Jiaxue Cao‎ et al.
  • Scientific reports‎
  • 2015‎

Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation - sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the "development process" (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.


Gender-Specific Associations Between Saliva Microbiota and Body Size.

  • Sajan C Raju‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The human intestinal microbiota likely play an important role in the development of overweight and obesity. However, the associations between saliva microbiota and body mass index (BMI) have been sparsely studied. The aim of this study was to identify the associations between saliva microbiota and body size in Finnish children.


Efficacy in deceptive vocal exaggeration of human body size.

  • Katarzyna Pisanski‎ et al.
  • Nature communications‎
  • 2021‎

How can deceptive communication signals exist in an evolutionarily stable signalling system? To resolve this age-old honest signalling paradox, researchers must first establish whether deception benefits deceivers. However, while vocal exaggeration is widespread in the animal kingdom and assumably adaptive, its effectiveness in biasing listeners has not been established. Here, we show that human listeners can detect deceptive vocal signals produced by vocalisers who volitionally shift their voice frequencies to exaggerate or attenuate their perceived size. Listeners can also judge the relative heights of cheaters, whose deceptive signals retain reliable acoustic cues to interindividual height. Importantly, although vocal deception biases listeners' absolute height judgments, listeners recalibrate their height assessments for vocalisers they correctly and concurrently identify as deceptive, particularly men judging men. Thus, while size exaggeration can fool listeners, benefiting the deceiver, its detection can reduce bias and mitigate costs for listeners, underscoring an unremitting arms-race between signallers and receivers in animal communication.


Pelvic sexual dimorphism among species monomorphic in body size: relationship to relative newborn body mass.

  • Robert G Tague‎
  • Journal of mammalogy‎
  • 2016‎

Females have larger pelves than males among eutherians to mitigate obstetrical difficulty. This study addresses 3 issues concerning pelvic sexual dimorphism using 8 species that are sexually monomorphic in nonpelvic size: Aotus azarae , Castor canadensis , Dasypus novemcinctus , Hylobates lar , Saguinus geoffroyi , Sciurus carolinensis , Sylvilagus floridanus , and Urocyon cinereoargenteus . Using published data to compute the index of relative newborn body mass (RNBM = [newborn body mass/adult female body mass]100%) for 266 eutherian species, A. azarae , H. lar , and S. geoffroyi are characterized as giving birth to relatively large newborns and the other 5 species as giving birth to relatively small newborns. The 3 issues are, compared to species giving birth to relatively small newborns, whether species that give birth to relatively large newborns have 1) higher magnitude of pelvic sexual size dimorphism (SSD), 2) lower prevalence of pelvic joint fusion, and 3) dissociation between pelvic and nonpelvic sizes. Nine measures of the pelvis were taken, and fusion of interpubic and sacroiliac joints was observed. Species grouped by high and low RNBM do not differ significantly in magnitude of SSD of pelvic inlet circumference. Species with high RNBM have significantly lower prevalence of interpubic joint fusion than those with low RNBM. Sexes do not differ in their multiple correlation coefficients between inlet circumference and nonpelvic body size in 7 of 8 species. Results suggest that 1) there are multiple anatomical pathways for pelvic obstetrical sufficiency, 2) an unfused interpubic joint is obstetrically advantageous, and 3) relative newborn size does not change the association between pelvic and nonpelvic size in females and males.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: