Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,147 papers

Blood platelets in the progression of Alzheimer's disease.

  • Nina S Gowert‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.


Transcriptomic landscape of blood platelets in healthy donors.

  • Anna Supernat‎ et al.
  • Scientific reports‎
  • 2021‎

Blood platelet RNA-sequencing is increasingly used among the scientific community. Aberrant platelet transcriptome is common in cancer or cardiovascular disease, but reference data on platelet RNA content in healthy individuals are scarce and merit complex investigation. We sought to explore the dynamics of platelet transcriptome. Datasets from 204 healthy donors were used for the analysis of splice variants, particularly with regard to age, sex, blood storage time, unit of collection or library size. Genes B2M, PPBP, TMSB4X, ACTB, FTL, CLU, PF4, F13A1, GNAS, SPARC, PTMA, TAGLN2, OAZ1 and OST4 demonstrated the highest expression in the analysed cohort, remaining substantial transcription consistency. CSF3R gene was found upregulated in males (fold change 2.10, FDR q < 0.05). Cohort dichotomisation according to the median age, showed upregulated KSR1 in the older donors (fold change 2.11, FDR q < 0.05). Unsupervised hierarchical clustering revealed two clusters which were irrespective of age, sex, storage time, collecting unit or library size. However, when donors are analysed globally (as vectors), sex, storage time, library size, the unit of blood collection as well as age impose a certain degree of between- and/or within-group variability. Healthy donor platelet transcriptome retains general consistency, with very few splice variants deviating from the landscape. Although multidimensional analysis reveals statistically significant variability between and within the analysed groups, biologically, these changes are minor and irrelevant while considering disease classification. Our work provides a reference for studies working both on healthy platelets and pathological conditions affecting platelet transcriptome.


Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood.

  • Michal Bijak‎ et al.
  • International journal of biological macromolecules‎
  • 2017‎

Flavonolignans are a group of active chemical compounds presented in the silymarin - a standardized extract obtained from fruits and seeds of Milk thistle (Silybum marianum L. Gaernt.). Since the 70s of the last century, flavonolignans have been regarded to the official medicine as a substances having hepatoprotective properties. However many researches performed in recent years have demonstrated that flavonolignans posses many other healthy properties including modulation of variety cell-signaling pathways. The aim of our study was to examine the effects of three major flavonolignans (silybin, silychristin and silydianin) on ADP-induced blood platelet activation using the flow cytometry analysis as well as determine the mechanism of this interaction by bioinformatic ligand docking method. We observed that all tested flavonolignans in dose-dependent manner inhibit formation of blood platelet aggregates and microparticles as well as decrease expression of P-selectin and activation of integrin αIIbβ3. Our computer-generated models confirm the flow cytometry analysis. We observed that all tested flavonolignans have conformations which are able to bind to the extracellular domain of P2Y12 receptor and probably block interaction with ADP. Our studies may help in the development of a new potential anti-platelet agent, which might be an alternative to the current using drugs.


Flavonolignans inhibit the arachidonic acid pathway in blood platelets.

  • Michal Bijak‎ et al.
  • BMC complementary and alternative medicine‎
  • 2017‎

Arachidonic acid metabolism by cyclooxygenase (COX) is a major pathway for blood platelets' activation, which is associated with pro-thrombotic platelet activity and the production of pro-inflammatory mediators. Inhibition of COX activity is one of the major means of anti-platelet pharmacotherapy preventing arterial thrombosis and reducing the incidence of cardiovascular events. Recent studies have presented that a silymarin (standardized extract of Milk thistle (Silybum marianum)) can inhibit the COX pathway. Accordingly, the aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on COX pathway activity in blood platelets.


Antimalarial drugs impact chemical messenger secretion by blood platelets.

  • Kang Xiong-Hang‎ et al.
  • Biochemistry and biophysics reports‎
  • 2020‎

Advances in antimalarial drug development are important for combating malaria. Among the currently identified antimalarial drugs, it is suggested that some interact directly with the malarial parasites while others interact indirectly with the parasites. While this approach leads to parasite elimination, little is known about how these antimalarial drugs impact immune cells that are also critical in malarial response.


Vascular surveillance by haptotactic blood platelets in inflammation and infection.

  • Leo Nicolai‎ et al.
  • Nature communications‎
  • 2020‎

Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets.


Therapeutic use of red blood cells and platelets derived from human cord blood stem cells.

  • Xiaoyan Xie‎ et al.
  • Stem cells translational medicine‎
  • 2021‎

Red blood cells (RBCs) and platelets derived from stem cells are possible solutions to the increasing demand for blood transfusion. Based on the availability of stem cells, their relatively defined differentiation mechanisms, and the massive exploration of induction systems, the generation of RBCs or platelets in vitro from cord blood hematopoietic stem/progenitor cells (CB-HSPCs) has potential for clinical applications. However, information on the clinical translation of stem cell-derived RBCs and platelets in the literature and at the ClinicalTrials.gov website is very limited. The only clinical trial on cultured RBCs, which aimed to assess the lifespan of RBCs cultured in vivo, was reported by Luc Douay and colleagues. Of note, the cultured RBCs they used were derived from autologous peripheral blood HSPCs, and no cultured platelets have been applied clinically to date. However, CB-HSPC-derived megakaryocytes, platelet precursors, have been used in the treatment of thrombocytopenia. A successful phase I trial was reported, followed by phase II and III clinical trials conducted in China. In this review, the gap between the many basic studies and limited clinical trials on stem cell-derived RBCs and platelets is summarized. The possible reasons and solutions for this gap are discussed. Further technological improvements for blood cell expansion and maturation ex vivo and the establishment of biological standards for stem cell derivatives might help to facilitate the therapeutic applications of cultured RBCs and platelets derived from CB-HSPCs in the near future.


Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets.

  • Michal Bijak‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets' aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets' ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet activation.


Effects of functionalized silver nanoparticles on aggregation of human blood platelets.

  • Justyna Hajtuch‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

We studied the effects of silver nanoparticles (AgNPs) on human blood platelet function. We hypothesized that AgNPs, a known antimicrobial agent, can be used as blood-compatible, "ideal material'' in medical devices or as a drug delivery system. Therefore, the aim of the current study was to investigate if functionalized AgNPs affect platelet function and platelets as well as endothelial cell viability in vitro.


Rupture Forces among Human Blood Platelets at different Degrees of Activation.

  • Thi-Huong Nguyen‎ et al.
  • Scientific reports‎
  • 2016‎

Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects.


Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX.

  • Eudmar Marcolino‎ et al.
  • Oncogenesis‎
  • 2020‎

Cancer cells go through a process known as epithelial-mesenchymal transition (EMT) during which they acquire the ability to migrate and invade extracellular matrix. Some cells also acquire the ability to move across a layer of endothelial cells to enter and exit the bloodstream; intra- and extravasation, respectively. The transcription factor PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) controls cell proliferation and cell migration/invasion in a range of cell types. Our previous work showed that PRH activity is downregulated in prostate cancer cells owing to increased inhibitory PRH phosphorylation and that this increases cell proliferation and invasion. PRH inhibits migration and invasion by prostate and breast epithelial cells in part by activating the transcription of Endoglin, a transforming growth factor β (TGFβ) co-receptor. Here we show that depletion of PRH in immortalised prostate epithelial cells results in increased extravasation in vitro. We show that blood platelets stimulate extravasation of cells with depleted PRH and that inhibition of TGFβ signalling blocks the effects of platelets on these cells. Moreover, TGFβ induces changes characteristic of EMT including decreased E-Cadherin expression and increased Snail expression. We show that in prostate cells PRH regulates multiple genes involved in EMT and TGFβ signalling. However, both platelets and TGFβ increase PRH phosphorylation. In addition, TGFβ increases binding of its effector pSMAD3 to the PRH/HHEX promoter and downregulates PRH protein and mRNA levels. Thus, TGFβ signalling downregulates PRH activity by multiple mechanisms and induces an EMT that facilitates extravasation and sensitises cells to TGFβ.


Flavonolignans Inhibit IL1-β-Induced Cross-Talk between Blood Platelets and Leukocytes.

  • Michal Bijak‎ et al.
  • Nutrients‎
  • 2017‎

Interleukin-1 beta (IL-1β)-the most potent pro-inflammatory is responsible for a broad spectrum of immune and inflammatory responses, it induces T-cell and B-cell activation and consequently the synthesis of other pro-inflammatory cytokines (such as IFN-γ and TNF). IL-1β induces the formation of blood platelet-leukocyte aggregates (PLAs), which suggests that IL-1β significantly affects the cross-talk between blood platelets and the immune response system, leading to coronary thrombosis. The aim of our study is to investigate the effect of flavonolignans (silybin, silychristin and silydianin) on the IL-1β-induced interaction between platelets and leukocytes, as well as on the expression and the secretion of pro-inflammatory factors. Whole blood samples were pre-incubated with commercially available flavonolignans (silybin, silychristin and silydianin) in a concentration range of 10-100 µM (30 min, 37 °C). Next, samples were activated by IL-1β for 1 h. Blood platelet-leukocyte aggregates were detected by using the double-labeled flow cytometry (CD61/CD45). The level of produced cytokines was estimated via the ELISA immunoenzymatic method. IFN-γ and TNF gene expression was evaluated using Real Time PCR with TaqMan arrays. We observed that in a dose-dependent manner, silybin and silychristin inhibit the IL-1β-induced formation of blood platelet-leukocyte aggregates in whole blood samples, as well as the production of pro-inflammatory cytokines-IL-2, TNF, INF-α, and INF-γ. Additionally, these two flavonolignans abolished the IL-1β-induced expression of mRNA for IFN-γ and TNF. Our current results demonstrate that flavonolignans can be novel compounds used in the prevention of cardiovascular diseases with dual-use action as antiplatelet and anti-inflammatory agents.


Augmented Production of Platelets From Cord Blood With Euchromatic Histone Lysine Methyltransferase Inhibition.

  • Yiying Liu‎ et al.
  • Stem cells translational medicine‎
  • 2022‎

Cord blood hematopoietic stem/progenitor cells (CB-HSPCs) have emerged as a promising supply for functional platelets to potentially alleviate the increasing demand for platelet transfusions, but the clinical application has been limited by the undefined molecular mechanism and insufficient platelet production. Here, we performed single-cell profiling of more than 16 160 cells to construct a dynamic molecular landscape of human megakaryopoiesis from CB-HSPCs, enabling us to uncover, for the first time, cellular heterogeneity and unique features of neonatal megakaryocytes (MKs) and to also offer unique resources for the scientific community. By using this model, we defined the genetic programs underlying the differentiation process from megakaryocyte-erythroid progenitors (MEPs) to MKs via megakaryocyte progenitors (MKPs) and identified inhibitors of euchromatic histone lysine methyltransferase (EHMT), which, when applied at the early stage of differentiation, significantly increase the final platelet production. At the mechanistic level, we found that EHMT inhibitors act to selectively induce the expansion of MEPs and MKPs. Together, we uncover new mechanistic insights into human megakaryopoiesis and provide a novel chemical strategy for future large-scale generation and clinical applications of platelets.


Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets.

  • Mathias Orban‎ et al.
  • PloS one‎
  • 2015‎

Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application.


Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets.

  • Joanna Saluk‎ et al.
  • International journal of biological macromolecules‎
  • 2015‎

LPS is a Gram-negative bacteria endotoxin, which is an important pro-inflammatory agent. Blood platelets take part both in inflammatory processes and in pathogenesis of septic shock following accumulation of LPS. As a platelet agonist LPS causes the intraplatelet overproduction of ROS/RNS that are responsible for adverse modifications in the structure of platelet compounds being associated with a development of platelet-dependent diseases. Existing evidence suggests that anthocyanins (ATH) are able to protect the circulatory system. The antioxidative properties of ATH are believed to be mainly responsible for their positive health effects. The main goal of the present in vitro study was to investigate the potential protective properties of red cabbage ATH against oxidative damage induced by LPS in blood platelets. Exposure of platelets to LPS resulted in carbonyl group increase, 3-nitrotyrosine formation, lipid peroxidation and O2(•-) generation. We have shown that ATH extract effectively decreased oxidative stress induced by LPSs. The in silico analysis demonstrated that both cyanin and LPS were located at the same region of human TLR4-MD-2 complex. Our findings suggest that there could be two-way ATH platelet protection mechanism, by their antioxidant properties and directly by binding with TLRs.


Autologous blood products: Leucocyte and Platelets Rich Fibrin (L-PRF) and Platelets Rich Plasma (PRP) gel to promote cutaneous ulcer healing - a systematic review.

  • Indra B Napit‎ et al.
  • BMJ open‎
  • 2023‎

To summarise evidence on the effectiveness of Platelet-Rich Plasma (PRP) gel and Leucocyte and Platelet Rich Fibrin (L-PRF) gel as agents promoting ulcer healing compared with the standard wound dressing techniques alone.


Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets.

  • Jinhua Qin‎ et al.
  • Cell stem cell‎
  • 2022‎

Reprogramming somatic cells into megakaryocytes (MKs) would provide a promising source of platelets. However, using a pharmacological approach to generate human MKs from somatic cells remains an unmet challenge. Here, we report that a combination of four small molecules (4M) successfully converted human cord blood erythroblasts (EBs) into induced MKs (iMKs). The iMKs could produce proplatelets and release functional platelets, functionally resembling natural MKs. Reprogramming trajectory analysis revealed an efficient cell fate conversion of EBs into iMKs by 4M via the intermediate state of bipotent precursors. 4M induced chromatin remodeling and drove the transition of transcription factor (TF) regulatory network from key erythroid TFs to essential TFs for megakaryopoiesis, including FLI1 and MEIS1. These results demonstrate that the chemical reprogramming of cord blood EBs into iMKs provides a simple and efficient approach to generate MKs and platelets for clinical applications.


Removal of platelets from blood plasma to improve the quality of extracellular vesicle research.

  • Britta Bettin‎ et al.
  • Journal of thrombosis and haemostasis : JTH‎
  • 2022‎

Blood plasma is commonly used for biomarker research of extracellular vesicles (EVs). Removing all cells prior to analysis of EVs is essential.


Expresser phenotype determines ABO(H) blood group antigen loading on platelets and von Willebrand factor.

  • Diarmaid O'Donghaile‎ et al.
  • Scientific reports‎
  • 2020‎

ABO blood group is associated with cardiovascular disease, with significantly lower risk in blood group O individuals. ABO(H) blood group determinants are expressed on different glycoproteins on platelet surfaces. In addition, ABO(H) structures are also present on VWF glycans. These ABO(H) carbohydrates influence both platelet and VWF function. Previous studies have reported that approximately 5-10% of normal blood donors express abnormally high or low levels of A or B blood group antigens on their platelet surfaces (high expresser phenotype, HXP or low expresser phenotype, LXP respectively). In this study, the biological effects of the ABO Expresser phenotype were investigated. ABO(H) expression on platelets and plasma VWF was studied in a series of 541 healthy blood donors. Overall, 5.6% of our study cohort were classified as HXP, whilst 4.4% satisfied criteria for LXP. We demonstrate that genotype at the ABO blood group locus plays a critical role in modulating the platelet HXP phenotype. In particular, A1A1 genotype is a major determinant of ABO high-expresser trait. Our data further show that ABH loading on VWF is also affected by ABO expresser phenotype. Consequently, A antigen expression on VWF was significantly elevated in HXP individuals and moderately reduced in LXP subjects (P < 0.05). Collectively, these findings suggest that ABO expresser phenotype influences primary hemostasis though several different pathways. Further studies will be required to define whether inter-individual variations in ABO(H) expression on platelets and/or VWF (particularly HXP and LXP) impact upon risk for cardiovascular disease.


Blood utilisation and transfusion reactions in adult patients transfused with conventional or pathogen-reduced platelets.

  • Burak Bahar‎ et al.
  • British journal of haematology‎
  • 2020‎

Pathogen-reduced (PR) platelets are routinely used in many countries. Some studies reported changes in platelet and red blood cell (RBC) transfusion requirements in patients who received PR platelets when compared to conventional (CONV) platelets. Over a 28-month period we retrospectively analysed platelet utilisation, RBC transfusion trends, and transfusion reaction rates data from all transfused adult patients transfused at the Yale-New Haven Hospital, New Haven, CT, USA. We determined the number of RBC and platelet components administered between 2 and 24, 48, 72 or 96 h. A total of 3767 patients received 21 907 platelet components (CONV = 8912; PR = 12 995); 1,087 patients received only CONV platelets (1578 components) and 1,466 patients received only PR platelets (2604 components). The number of subsequently transfused platelet components was slightly higher following PR platelet components (P < 0·05); however, fewer RBCs were transfused following PR platelet administration (P < 0·05). The mean time-to-next platelet component transfusion was slightly shorter following PR platelet transfusion (P = 0·002). The rate of non-septic transfusion reactions did not differ (all P > 0·05). Septic transfusion reactions (N = 5) were seen only after CONV platelet transfusions (P = 0·011). These results provide evidence for comparable clinical efficacy of PR and CONV platelets. PR platelets eliminated septic transfusion reactions without increased risk of other types of transfusions with only slight increase in platelet utilisation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: