Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,892 papers

Bleomycin Revisited: A Direct Comparison of the Intratracheal Micro-Spraying and the Oropharyngeal Aspiration Routes of Bleomycin Administration in Mice.

  • Ilianna Barbayianni‎ et al.
  • Frontiers in medicine‎
  • 2018‎

Idiopathic Pulmonary Fibrosis (IPF) is a fatal disease characterized by exuberant deposition of extracellular matrix components, deterioration of lung architecture and impairment of lung functions. Its etiopathogenesis remains incompletely understood, as reflected in the lack of an appropriate therapy. Modeling the human disease in mice via the administration of bleomycin (BLM), despite the inherent limitations, has provided valuable insights into the underlying pathogenetic mechanisms, and has been instrumental for the development and validation of new pharmacologic interventions. Here we have directly compared the, most widely used, intratracheal (IT) route of administration with oropharyngeal aspiration (OA). Our results suggest that the OA route of BLM-administration can be used as a safe and effective alternative, minimizing peri-operative and experimental mortality, while preserving a solid fibrotic profile, as assessed with a plethora of standardized readout assays.


Interleukin-22 inhibits bleomycin-induced pulmonary fibrosis.

  • Minrui Liang‎ et al.
  • Mediators of inflammation‎
  • 2013‎

Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL-) 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM-) induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδ T cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT) and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker ( α -smooth muscle actin ( α -SMA)) and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.


Corilagin attenuates aerosol bleomycin-induced experimental lung injury.

  • Zheng Wang‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Idiopathic pulmonary fibrosis (IPF) is a progressing lethal disease with few clinically effective therapies. Corilagin is a tannin derivative which shows anti-inflammatory and antifibrotics properties and is potentiated in treating IPF. Here, we investigated the effect of corilagin on lung injury following bleomycin exposure in an animal model of pulmonary fibrosis. Corilagin abrogated bleomycin-induced lung fibrosis as assessed by H&E; Masson's trichrome staining and lung hydroxyproline content in lung tissue. Corilagin reduced the number of apoptotic lung cells and prevented lung epithelial cells from membrane breakdown, effluence of lamellar bodies and thickening of the respiratory membrane. Bleomycin exposure induced expression of MDA, IKKα, phosphorylated IKKα (p-IKKα), NF-κB P65, TNF-α and IL-1β, and reduced I-κB expression in mice lung tissue or in BALF. These changes were reversed by high-dose corilagin (100 mg/kg i.p) more dramatically than by low dose (10 mg/kg i.p). Last, corilagin inhibits TGF-β1 production and α-SMA expression in lung tissue samples. Taken together, these findings confirmed that corilagin attenuates bleomycin-induced epithelial injury and fibrosis via inactivation of oxidative stress, proinflammatory cytokine release and NF-κB and TGF-β1 signaling. Corilagin may serve as a promising therapeutic agent for pulmonary fibrosis.


Vagotomy attenuates bleomycin-induced pulmonary fibrosis in mice.

  • Nana Song‎ et al.
  • Scientific reports‎
  • 2015‎

The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells.


Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice.

  • Sun Mi Choi‎ et al.
  • Journal of Korean medical science‎
  • 2016‎

Metformin has anti-inflammatory and anti-fibrotic effects. We investigated whether metformin has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis in a murine model. A total of 62 mice were divided into 5 groups: control, metformin (100 mg/kg), BLM, and BLM with metformin (50 mg/kg or 100 mg/kg). Metformin was administered to the mice orally once a day from day 1. We sacrificed half of the mice on day 10 and collected the bronchoalveolar lavage fluid (BALF) from their left lungs. The remaining mice were sacrificed and analyzed on day 21. The right lungs were harvested for histological analyses. The messenger RNA (mRNA) levels of epithelial-mesenchymal transition markers were determined via analysis of the harvested lungs on day 21. The mice treated with BLM and metformin (50 mg/kg or 100 mg/kg) showed significantly lower levels of inflammatory cells in the BALF compared with the BLM-only mice on days 10 and 21. The histological examination revealed that the metformin treatment led to a greater reduction in inflammation than the treatment with BLM alone. The mRNA levels of collagen, collagen-1, procollagen, fibronectin, and transforming growth factor-β in the metformin-treated mice were lower than those in the BLM-only mice on day 21, although statistical significance was observed only in the case of procollagen due to the small number of live mice in the BLM-only group. Additionally, treatment with metformin reduced fibrosis to a greater extent than treatment with BLM alone. Metformin suppresses the inflammatory and fibrotic processes of BLM-induced pulmonary fibrosis in a murine model.


Plumbagin attenuates Bleomycin-induced lung fibrosis in mice.

  • Saber Mehdizadeh‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2022‎

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with limited treatment options. Plumbagin (PL) is an herbal extract with diverse pharmacological effects that have been recently used to treat various types of cancer. This study aims to explore the anti-fibrotic effect of PL and possible underlying mechanisms in IPF.


Mesenchymal stem cells are sensitive to bleomycin treatment.

  • Nils H Nicolay‎ et al.
  • Scientific reports‎
  • 2016‎

Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic.


Cigarette smoking aggravates bleomycin-induced experimental pulmonary fibrosis.

  • Li-Ling Zhou‎ et al.
  • Toxicology letters‎
  • 2019‎

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death. The cause of IPF is poorly understood. Although several environmental and occupational factors are considered as risk factors in IPF, cigarette smoking seems to be the most strongly associated risk factor. Here firstly, we treated mice with cigarette (16 mg tar, 1.0 mg nicotine in each cigarette) smoking and tried to explore the role of cigarette smoking in pulmonary fibrosis. Mice were continuously subjected to smoke for about 1 h each day (12 cigarettes per day, 5 days per week) during 40 days. Bleomycin was administrated by intraperitoneal injection at a dose of 40 mg/kg on days 1, 5, 8, 11 and 15. We found bleomycin induced pulmonary fibrosis in mice, and cigarette smoking augmented bleomycin-induced fibrosis reflected by both in fibrotic area and percentages of collagen in the lungs. Then we prepared and employed cigarette smoke extract (CSE) in cell models and found that CSE could induce the activation of p-Smad2/3 and p-Akt, as well as collagen-I synthesis and cell proliferation in lung fibroblasts and pleural mesothelial cells (PMCs). TGF-β1 signaling mediated CSE-induced PMCs migration. Moreover, in vitro studies revealed that CSE had superimposed effect on bleomycin-induced activation of TGF-β-Smad2/3 and -Akt signaling. TGF-β-Smad2/3 and -Akt signaling were further augmented by cigarette smoking in the lung of bleomycin-treated mice. Taken together, these findings represent the first evidence that cigarette smoking aggravated bleomycin-induced pulmonary fibrosis via TGF-β1 signaling.


Antitumor Effect of Bleomycin Nanoaerosol in Murine Carcinoma Model.

  • Saida S Karshieva‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Clinical Efficacy of 5-Fluorouracil and Bleomycin in Dermatology.

  • Suyeon Kim‎ et al.
  • Journal of clinical medicine‎
  • 2024‎

Bleomycin and 5-fluorouracil (5-FU) are widely used in various dermatological disorders. Both drugs are well-recognized as antineoplastic drugs and exert their effect by blocking the cell cycle. Topical and intralesional formulations are available and have been studied in both non-neoplastic and cancerous lesions. However, data comparing the effect of bleomycin and 5-FU in the dermatological disorders are limited. This review outlines the action mechanisms of both drugs and compares their clinical efficacies in a wide range of dermatologic diseases including hypertrophic scar, wart, skin cancer, vascular malformation, hemangioma, and vitiligo, and discusses the overall safety of the drugs. Intralesional bleomycin treatment is effective in hypertrophic scars and warts, but intralesional 5-FU may also be considered since it is cheaper and less painful. Moreover, intralesional 5-FU and bleomycin injection is a viable option for premalignant lesions (i.e., actinic keratosis) and inoperable skin cancers. Both bleomycin and 5-FU have been applied as treatment adjuncts for vitiligo, with 5-FU showing a slightly better outcome. Both agents have a good safety profile, and no serious side effects have been reported following their use in the field of dermatology.


Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

  • Ruijuan Guan‎ et al.
  • Toxicology letters‎
  • 2016‎

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition.


Bleomycin sensitivity in Escherichia coli is medium-dependent.

  • Tao Xu‎ et al.
  • PloS one‎
  • 2012‎

Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.


Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids.

  • Ville Tähtinen‎ et al.
  • Bioconjugate chemistry‎
  • 2022‎

Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.


Mefunidone Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice.

  • Yuanyuan Han‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is one of the most common and devastating interstitial lung diseases with poor prognosis. Currently, few effective drugs are available for IPF. Hence, we sought to explore the role of mefunidone (MFD), a newly synthesized drug developed by our team, in lung fibrosis. In this study, MFD was found to attenuate bleomycin (BLM) -induced lung fibrosis and inflammation in mice according to Ashcroft and alveolitis scoring. The protein contents and total cell counts in bronchoalveolar lavage fluids of BLM-treated mice were also lowered by MFD. Moreover, the elevation of TGF-β/Smad2 and phosphorylation of MAPK pathways was repressed by MFD. Additionally, MFD attenuated the swelling and vacuolization of mitochondria, lowered the ratio of apoptotic cells, restored the mitochondrial membrane potential, and reversed the expression of cleaved-caspase 3, Bcl-2 and Bax. Meanwhile, the level of epithelial marker, E-cadherin, was restored by MFD, while the levels of mesenchymal markers such as Snail and vimentin were down-regulated by MFD. Besides, MFD inhibited the expression of fibronectin and α-smooth muscle actin in TGF-β treated normal human lung fibroblasts. Thus, our findings suggested that MFD could ameliorate lung fibrosis, cell apoptosis and EMT potentially via suppression of TGF-β/Smad2 and MAPK pathways.


Modified bleomycin disaccharides exhibiting improved tumor cell targeting.

  • Manikandadas M Madathil‎ et al.
  • Biochemistry‎
  • 2014‎

The bleomycins (BLMs) are a family of antitumor antibiotics used clinically for anticancer chemotherapy. Their antitumor selectivity derives at least in part from their ability to target tumor cells, a property that resides in the carbohydrate moiety of the antitumor agent. In earlier studies, we have demonstrated that the tumor cell selectivity resides in the mannose carbamoyl moiety of the BLM saccharide and that both the BLM disaccharide and monosaccharide containing the carbamoyl moiety were capable of the delivery/uptake of a conjugated cyanine dye into cultured cancer cell lines. Presently, the nature of the participation of the carbamoyl moiety has been explored further to provide compounds of utility for defining the nature of the mechanism of tumor cell recognition and uptake by BLM saccharides and in the hope that more efficient compounds could be identified. A library of seven disaccharide-Cy5** dye conjugates was prepared that are structural analogues of the BLM disaccharide. These differed from the natural BLM disaccharide in the position, orientation, and substitution of the carbamoyl group. Studies of these compounds in four matched sets of tumor and normal cell lines revealed a few that were both tumor cell selective and internalized 2-4-fold more efficiently than the natural BLM disaccharide.


Molecular alterations in metaphase chromosomes induced by bleomycin.

  • Marta Urbańska‎ et al.
  • Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy‎
  • 2024‎

Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.


Pingyangmycin and Bleomycin Share the Same Cytotoxicity Pathway.

  • Yanli He‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Pingyangmycin is an anticancer drug known as bleomycin A5 (A5), discovered in the Pingyang County of Zhejiang Province of China. Bleomycin (BLM) is a mixture of mainly two compounds (A2 and B2), which is on the World Health Organization's list of essential medicines. Both BLM and A5 are hydrophilic molecules that depend on transporters or endocytosis receptors to get inside of cells. Once inside, the anticancer activities rely on their abilities to produce DNA breaks, thus leading to cell death. Interestingly, the half maximal inhibitory concentration (IC50) of BLMs in different cancer cell lines varies from nM to μM ranges. Different cellular uptake, DNA repair rate, and/or increased drug detoxification might be some of the reasons; however, the molecules and signaling pathways responsible for these processes are largely unknown. In the current study, we purified the A2 and B2 from the BLM and tested the cytotoxicities and the molecular mechanisms of each individual compound or in combination with six different cell lines, including a Chinese hamster ovary (CHO) cell line defective in glycosaminoglycan biosynthesis. Our data suggested that glycosaminoglycans might be involved in the cellular uptake of BLMs. Moreover, both BLM and A5 shared similar signaling pathways and are involved in cell cycle and apoptosis in different cancer cell lines.


Hyperoside Attenuates Bleomycin-Induced Pulmonary Fibrosis Development in Mice.

  • Jizhen Huang‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal, and chronic lung disease. There are no effective drug therapies for IPF. Hyperoside, a flavonoid glycoside, has been proven to have anti-inflammatory, anti-fibrosis, antioxidant, and anti-cancer effects. The aim of this study was to explore the role of hyperoside in bleomycin-induced pulmonary fibrosis development in mice. We established the pulmonary fibrosis model by a single intratracheal aerosol injection of bleomycin. Seven days after the bleomycin treatment, the mice were intraperitoneally administered with hyperoside for 14 days. We found that hyperoside treatment ameliorated fibrotic pathological changes and collagen deposition in the lungs of mice with bleomycin-induced pulmonary fibrosis. Hyperoside treatment also reduced the levels of MDA, TNF-α, and IL-6 and increased the activity of SOD. In addition, hyperoside might inhibit the epithelial-mesenchymal transition (EMT) via the AKT/GSK3β pathway. Based on these findings, hyperoside attenuated pulmonary fibrosis development by inhibiting oxidative stress, inflammation, and EMT in the lung tissues of mice with pulmonary fibrosis. Therefore, hyperoside might be a promising candidate drug for the treatment of pulmonary fibrosis.


Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats.

  • Huanyu He‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disorder with unknown etiology and a high mortality rate. Tanshinone ⅡA (Tan ⅡA) is a lipophilic diterpene extracted from the Chinese herb Salvia miltiorrhiza Bunge with diverse biological functions. The present study was conducted to evaluate the effects of Tan ⅡA on bleomycin (BLM)‑induced pulmonary fibrosis in rats. Rats received an intraperitoneal injection of Tan ⅡA and normal rats were used as controls. Severe pulmonary edema, inflammation and fibrosis were observed in the BLM‑treated rats and the counts of total cells, neutrophils and lymphocytes were significantly increased in the bronchoalveolar lavage fluids of those rats. These pathological changes were markedly attenuated by subsequent treatment with Tan ⅡA. In addition, BLM‑induced increased expression of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6, cyclooxygenase‑2, prostaglandin E2, malondialdehyde, inducible nitric oxide synthase and nitric oxide in rats, which was also suppressed by Tan ⅡA injection. The present findings suggest therapeutic potential of Tan ⅡA for pulmonary fibrosis.


BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin.

  • Jane M Coughlin‎ et al.
  • Biochemistry‎
  • 2014‎

The bleomycin (BLM) family of glycopeptide-derived antitumor antibiotics consists of BLMs, tallysomycins (TLMs), phleomycins (PLMs), and zorbamycin (ZBM). The self-resistant elements BlmB and TlmB, discovered from the BLM- and TLM-producing organisms Streptomyces verticillus ATCC15003 and Streptoalloteichus hindustanus E465-94 ATCC31158, respectively, are N-acetyltransferases that provide resistance to the producers by disrupting the metal-binding domain of the antibiotics required for activity. Although each member of the BLM family of antibiotics possesses a conserved metal-binding domain, the structural differences between each member, namely, the bithiazole moiety and C-terminal amine of BLMs, have been suggested to instill substrate specificity within BlmB. Here we report that BlmB and TlmB readily accept and acetylate BLMs, TLMs, PLMs, and ZBM in vitro but only in the metal-free forms. Kinetic analysis of BlmB and TlmB reveals there is no strong preference or rate enhancement for specific substrates, indicating that the structural differences between each member of the BLM family play a negligible role in substrate recognition, binding, or catalysis. Intriguingly, the zbm gene cluster from Streptomyces flavoviridis ATCC21892 does not contain an N-acetyltransferase, yet ZBM is readily acetylated by BlmB and TlmB. We subsequently established that S. flavoviridis lacks the homologue of BlmB and TlmB, and ZbmA, the ZBM-binding protein, alone is sufficient to provide ZBM resistance. We further confirmed that BlmB can indeed confer resistance to ZBM in vivo in S. flavoviridis, introduction of which into wild-type S. flavoviridis further increases the level of resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: