Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 241 papers

Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo.

  • Viviane Vieira‎ et al.
  • Mechanisms of development‎
  • 2017‎

The beautiful mitotic waves that characterize nuclear divisions in the early Drosophila embryo have been the subject of intense research to identify the elements that control mitosis. Calcium waves in phase with mitotic waves suggest that calcium signals control this synchronized pattern of nuclear divisions. However, protein targets that would translate these signals into mitotic control have not been described. Here we investigate the role of the calcium-dependent protease Calpain A in mitosis. We show that impaired Calpain A function results in loss of mitotic synchrony and ultimately halted embryonic development. The presence of defective microtubules and chromosomal architecture at the mitotic spindle during metaphase and anaphase and perturbed levels of Cyclin B indicate that Calpain A is required for the metaphase-to-anaphase transition. Our results suggest that Calpain A functions as part of a timing module in mitosis, at the interface between calcium signals and mitotic cycles of the Drosophila embryo.


DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo.

  • Mojgan Padash Barmchi‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Morphogenesis of the Drosophila melanogaster embryo is associated with a dynamic reorganization of the actin cytoskeleton that is mediated by small GTPases of the Rho family. Often, Rho1 controls different aspects of cytoskeletal function in parallel, requiring a complex level of regulation. We show that the guanine triphosphate (GTP) exchange factor DRhoGEF2 is apically localized in epithelial cells throughout embryogenesis. We demonstrate that DRhoGEF2, which has previously been shown to regulate cell shape changes during gastrulation, recruits Rho1 to actin rings and regulates actin distribution and actomyosin contractility during nuclear divisions, pole cell formation, and cellularization of syncytial blastoderm embryos. We propose that DRhoGEF2 activity coordinates contractile actomyosin forces throughout morphogenesis in Drosophila by regulating the association of myosin with actin to form contractile cables. Our results support the hypothesis that specific aspects of Rho1 function are regulated by specific GTP exchange factors.


Heart myofibrillogenesis occurs in isolated chick posterior blastoderm: a culture model.

  • Hiroko Matsui‎ et al.
  • Acta histochemica et cytochemica‎
  • 2006‎

Early cardiogenesis including myofibrillogenesis is a critical event during development. -Recently we showed that prospective cardiomyocytes reside in the posterior lateral blastoderm in the chick embryo. Here we cultured the posterior region of the chick blastoderm in serum-free medium and observed the process of myofibrillogenesis by immunohistochemistry. After 48 hours, explants expressed sarcomeric proteins (sarcomeric alpha-actinin, 61%; smooth muscle alpha-actin, 95%; Z-line titin, 56%; sarcomeric myosin, 48%); however, they did not yet show a mature striation. After 72 hours, more than 92% of explants expressed I-Z-I proteins, which were incorporated into the striation in 75% of explants or more (sarcomeric alpha-actinin, 75%; smooth muscle alpha-actin, 81%; Z-line titin, 83%). Sarcomeric myosin was -expressed in 63% of explants and incorporated into A-bands in 37%. The percentage incidence of expression or striation of I-Z-I proteins was significantly higher than that of sarcomeric myosin. Results suggested that the nascent I-Z-I components appeared to be generated independently of A-bands in the cultured posterior blastoderm, and that the process of myofibrillogenesis observed in our culture model faithfully reflected that in vivo. Our blastoderm culture model appeared to be useful to investigate the mechanisms regulating the early cardiogenesis.


Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm.

  • Peggy P Vorwald-Denholtz‎ et al.
  • Gene expression patterns : GEP‎
  • 2011‎

In most animals, the antero-posterior (A-P) axis requires a gradient of Wnt signaling. Wnts are expressed posteriorly in many vertebrate and invertebrate embryos, forming a gradient of canonical Wnt/β-Catenin activity that is highest in the posterior and lowest in the anterior. One notable exception to this evolutionary conservation is in the Drosophila embryo, in which the A-P axis is established by early transcription factors of maternal origin. Despite this initial axial establishment, Drosophila still expresses Wingless (Wg), the main Drosophila Wnt homologue, in a strong posterior band early in embryogenesis. Since its discovery 30 years ago this posterior band of Wg has been largely ignored. In this study, we re-examined the onset of expression of the Wg posterior band in relation to the expression of Wg in other segments, and compared the timing of its expression to that of axial regulators such as gap and pair-rule genes. It was found that the posterior band of Wg is first detected in blastoderm at mid nuclear cycle 14, before the segment-polarity stripes of Wg are formed in other segments. The onset of the posterior band of Wg expression was preceded by that of the gap gene products Hunchback (hb) and Krüppel (Kr), and the pair-rule protein Even-skipped (Eve). Although the function of the posterior band of Wg was not analyzed in this study, we note that in temperature-sensitive Wg mutants, in which Wg is not properly secreted, the posterior band of Wg expression is diminished in strength, indicating a positive feedback loop required for Wg robust expression at the cellular blastoderm stage. We propose that this early posterior expression could play a role in the refinement of A-P patterning.


Analysis of mitochondrial organization and function in the Drosophila blastoderm embryo.

  • Sayali Chowdhary‎ et al.
  • Scientific reports‎
  • 2017‎

Mitochondria are inherited maternally as globular and immature organelles in metazoan embryos. We have used the Drosophila blastoderm embryo to characterize their morphology, distribution and functions in embryogenesis. We find that mitochondria are relatively small, dispersed and distinctly distributed along the apico-basal axis in proximity to microtubules by motor protein transport. Live imaging, photobleaching and photoactivation analyses of mitochondrially targeted GFP show that they are mobile in the apico-basal axis along microtubules and are immobile in the lateral plane thereby associating with one syncytial cell. Photoactivated mitochondria distribute equally to daughter cells across the division cycles. ATP depletion by pharmacological and genetic inhibition of the mitochondrial electron transport chain (ETC) activates AMPK and decreases syncytial metaphase furrow extension. In summary, we show that small and dispersed mitochondria of the Drosophila blastoderm embryo localize by microtubule transport and provide ATP locally for the fast syncytial division cycles. Our study opens the possibility of use of Drosophila embryogenesis as a model system to study the impact of maternal mutations in mitochondrial morphology and metabolism on embryo patterning and differentiation.


Imaging and quantification of apical microvilli in the syncytial blastoderm of Drosophila embryos.

  • Debasmita Mitra‎ et al.
  • STAR protocols‎
  • 2022‎

The syncytial Drosophila blastoderm embryo contains apical microvilli with filamentous actin that are remodeled during nuclear division cycles 10-13. Here, we describe a protocol for preparing whole embryo samples and capturing images of microvilli using confocal and super-resolution STED microscopy. This protocol enables visualization and quantification of lengths and numbers of microvilli oriented along the imaging plane. We provide information on identifying different nuclear division cycles and examples of quantification from the interphase and metaphase of cycle 12. For complete details on the use and execution of this protocol, please refer to Sherlekar et al. (2020).


Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms.

  • Reut Stahi‎ et al.
  • Proceedings. Biological sciences‎
  • 2016‎

Segments are formed simultaneously in the blastoderm of the fly Drosophila melanogaster through a hierarchical cascade of interacting transcription factors. Conversely, in many insects and in all non-insect arthropods most segments are formed sequentially from the posterior. We have looked at segmentation in the milkweed bug Oncopeltus fasciatus. Posterior segments are formed sequentially, through what is probably the ancestral arthropod mechanism. Formation of anterior segments bears many similarities to the Drosophila segmentation mode. These segments appear nearly simultaneously in the blastoderm, via a segmentation cascade that involves orthologues of Drosophila gap genes working through a functionally similar mechanism. We suggest that simultaneous blastoderm segmentation evolved at or close to the origin of holometabolous insects, and formed the basis for the evolution of the segmentation mode seen in Drosophila We discuss the changes in segmentation mechanisms throughout insect evolution, and suggest that the appearance of simultaneous segmentation as a novel feature of holometabolous insects may have contributed to the phenomenal success of this group.


Rho kinase inhibitor Y27632 affects initial heart myofibrillogenesis in cultured chick blastoderm.

  • Hirokazu Sakata‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2007‎

During early vertebrate development, Rho-associated kinases (ROCKs) are involved in various developmental processes. Here, we investigated spatiotemporal expression patterns of ROCK1 protein and examined the role of ROCK during initial heart myofibrillogenesis in cultured chick blastoderm. Immunohistochemistry showed that ROCK1 protein was distributed in migrating mesendoderm cells, visceral mesoderm of the pericardial coelom (from which cardiomyocytes will later develop), and cardiomyocytes of the primitive heart tube. Pharmacological inhibition of ROCK by Y27632 did not alter the myocardial specification process in cultured posterior blastoderm. However, Y27632 disturbed the formation of striated heart myofibrils in cultured posterior blastoderm. Furthermore, Y27632 affected the formation of costamere, a vinculin/integrin-based rib-like cell adhesion site. In such cardiomyocytes, cell-cell adhesion was disrupted and N-cadherin was distributed in the perinuclear region. Pharmacological inactivation of myosin light chain kinase, a downstream of ROCK, by ML-9 perturbed the formation of striated myofibrils as well as costameres, but not cell-cell adhesion. These results suggest that ROCK plays a role in the formation of initial heart myofibrillogenesis by means of actin-myosin assembly, and focal adhesion/costamere and cell-cell adhesion.


Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo.

  • Renald Delanoue‎ et al.
  • Cell‎
  • 2005‎

Molecular motors actively transport many types of cargo along the cytoskeleton in a wide range of organisms. One class of cargo is localized mRNAs, which are transported by myosin on actin filaments or by kinesin and dynein on microtubules. How the cargo is kept at its final intracellular destination and whether the motors are recycled after completion of transport are poorly understood. Here, we use a new RNA anchoring assay in living Drosophila blastoderm embryos to show that apical anchoring of mRNA after completion of dynein transport does not depend on actin or on continuous active transport by the motor. Instead, apical anchoring of RNA requires microtubules and involves dynein as a static anchor that remains with the cargo at its final destination. We propose a general principle that could also apply to other dynein cargo and to some other molecular motors, whereby cargo transport and anchoring reside in the same molecule.


Sex Bias and Maternal Contribution to Gene Expression Divergence in Drosophila Blastoderm Embryos.

  • Mathilde Paris‎ et al.
  • PLoS genetics‎
  • 2015‎

Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no "faster-X" effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates.


Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm.

  • Xiao-yong Li‎ et al.
  • PLoS biology‎
  • 2008‎

Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. We used whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over 40 well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.


An Arf-GEF regulates antagonism between endocytosis and the cytoskeleton for Drosophila blastoderm development.

  • Donghoon M Lee‎ et al.
  • Current biology : CB‎
  • 2013‎

Actin cytoskeletal networks push and pull the plasma membrane (PM) to control cell structure and behavior. Endocytosis also regulates the PM and can be promoted or inhibited by cytoskeletal networks. However, endocytic regulation of the general membrane cytoskeleton is undocumented.


A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos.

  • Hilde Janssens‎ et al.
  • EvoDevo‎
  • 2014‎

Comparative studies of developmental processes are one of the main approaches to evolutionary developmental biology (evo-devo). Over recent years, there has been a shift of focus from the comparative study of particular regulatory genes to the level of whole gene networks. Reverse-engineering methods can be used to computationally reconstitute and analyze the function and dynamics of such networks. These methods require quantitative spatio-temporal expression data for model fitting. Obtaining such data in non-model organisms remains a major technical challenge, impeding the wider application of data-driven mathematical modeling to evo-devo.


Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics.

  • Soile V E Keränen‎ et al.
  • Genome biology‎
  • 2006‎

To accurately describe gene expression and computationally model animal transcriptional networks, it is essential to determine the changing locations of cells in developing embryos.


Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

  • Jonathan Ben-David‎ et al.
  • Developmental biology‎
  • 2010‎

The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network.


A maternal product of the Punch locus of Drosophila melanogaster is required for precellular blastoderm nuclear divisions.

  • X Chen‎ et al.
  • Journal of cell science‎
  • 1994‎

The Punch locus of Drosophila melanogaster encodes the pteridine biosynthesis enzyme guanosine triphosphate cyclohydrolase. One class of Punch mutants is defective for a maternal function that results in embryonic death. We demonstrate here that the embryos exhibit nuclear division defects during the precellular blastoderm stage of development. These defects include abnormal nuclear distribution, mitotic asynchrony, and persisting chromatin bridges. Daughter nuclei that do not complete chromosome separation nevertheless initiate new interphase and mitotic cycles. As a result, interconnected mitotic figures are observed. Mitotic spindles and nuclear envelopes appear essentially normal. A mutant phenocopy was induced in wild-type embryos by treatment with the guanosine triphosphate cyclohydrolase inhibitor, 2,4-diamino-6-hydroxypyrimidine, at a very early cleavage stage. Furthermore, an inhibitor of a terminal step in pteridine biosynthesis produced an identical phenotype. Immunolocalization experiments define expression of Punch protein in nurse cells during oogenesis. The protein is packaged into granules as it is transported into the oocyte cytoplasm. As syncytial blastoderm nuclear divisions proceed, Punch protein levels decrease and disappear by cellularization. Defects in the expression of the protein in Punch maternal effect mutants correlate well with the early phenotypes. These results show that a Punch product is directly involved in early nuclear divisions and suggest a possible role in chromosome separation.


The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei.

  • David Frescas‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.


The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy.

  • Young Sun Hwang‎ et al.
  • Scientific reports‎
  • 2016‎

Small heat shock proteins (sHSPs) range in size from 12 to 42 kDa and contain an α-crystalline domain. They have been proposed to play roles in the first line of defence against various stresses in an ATP-independent manner. In birds, a newly oviposited blastoderm can survive several weeks in a dormant state in low-temperature storage suggesting that blastoderm cells are basically tolerant of environmental stress. However, sHSPs in the stress-tolerant blastoderm have yet to be investigated. Thus, we characterised the expression and function of sHSPs in the chicken blastoderm. We found that chicken HSP25 was expressed especially in the blastoderm and was highly upregulated during low-temperature storage. Multiple alignments, phylogenetic trees, and expression in the blastoderms of Japanese quail and zebra finch showed homologues of HSP25 were conserved in other avian species. After knockdown of chicken HSP25, the expression of pluripotency marker genes decreased significantly. Furthermore, loss of function studies demonstrated that chicken HSP25 is associated with anti-apoptotic, anti-oxidant, and pro-autophagic effects in chicken blastoderm cells. Collectively, these results suggest avian HSP25 could play an important role in association with the first line of cellular defences against environmental stress and the protection of future embryonic cells in the avian blastoderm.


Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability.

  • Chi F Lee‎ et al.
  • Journal of cell science‎
  • 2011‎

UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated muscles, similarly to muscle myosin. dUNC-45 localizes to the Z-discs of sarcomeres in third instar larval body-wall muscles. We produced a dunc-45 mutant in which zygotic expression is disrupted. This results in nearly undetectable dUNC-45 levels in maturing embryos as well as late embryonic lethality. Muscle myosin accumulation is robust in dunc-45 mutant embryos at 14 hours. However, myosin is dramatically decreased in the body-wall muscles of 22-hour-old mutant embryos. Furthermore, electron microscopy showed only a few thick filaments and irregular thick-thin filament lattice spacing. The lethality, defective protein accumulation, and ultrastructural abnormalities are rescued with a wild-type dunc-45 transgene, indicating that the mutant phenotypes arise from the dUNC-45 deficiency. Overall, our data indicate that dUNC-45 is important for myosin accumulation and muscle function. Furthermore, our results suggest that dUNC-45 acts post-translationally for proper myosin folding and maturation.


Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline.

  • Cris L Luengo Hendriks‎ et al.
  • Genome biology‎
  • 2006‎

To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: