Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,093 papers

Consistency between chromosomal status analysis of biopsied human blastocyst trophectoderm cells and whole blastocyst cells.

  • Harunori Takahashi‎ et al.
  • Reproductive medicine and biology‎
  • 2021‎

This study investigated the consistency between results of preimplantation genetic testing for aneuploidy performed on trophectoderm (TE) cells and remaining blastocyst cells.


Human blastoids model blastocyst development and implantation.

  • Harunobu Kagawa‎ et al.
  • Nature‎
  • 2022‎

One week after fertilization, human embryos implant into the uterus. This event requires the embryo to form a blastocyst consisting of a sphere encircling a cavity lodging the embryo proper. Stem cells can form a blastocyst model that we called a blastoid1. Here we show that naive human pluripotent stem cells cultured in PXGL medium2 and triply inhibited for the Hippo, TGF-β and ERK pathways efficiently (with more than 70% efficiency) form blastoids generating blastocyst-stage analogues of the three founding lineages (more than 97% trophectoderm, epiblast and primitive endoderm) according to the sequence and timing of blastocyst development. Blastoids spontaneously form the first axis, and we observe that the epiblast induces the local maturation of the polar trophectoderm, thereby endowing blastoids with the capacity to directionally attach to hormonally stimulated endometrial cells, as during implantation. Thus, we propose that such a human blastoid is a faithful, scalable and ethical model for investigating human implantation and development3,4.


Imaging filopodia dynamics in the mouse blastocyst.

  • Enrique Salas-Vidal‎ et al.
  • Developmental biology‎
  • 2004‎

During mammalian development, the first cell lineage diversification event occurs in the blastocyst, when the trophectoderm (TE) and the inner cell mass (ICM) become established. Part of the TE (polar) remains in contact with the ICM and differs from the mural TE (mTE) which is separated from the ICM by a cavity known as the blastocoele. The presence of filopodia connecting ICM cells with the distant mural TE cells through the blastocoelic fluid was investigated in this work. We describe two types of actin-based cell projections found in freshly dissected and in vitro cultured expanding blastocysts: abundant short filopodia projecting into the blastocoelic cavity that present a continuous undulating behavior; and long, thin traversing filopodia connecting the mural TE with the ICM. Videomicroscopy analyses revealed the presence of vesicle-like structures moving along traversing filopodia and dynamic cytoskeletal rearrangements. These observations, together with immunolocalization of the FGFR2 and the ErbB3 receptors to these cell extensions, suggest that they display signal transduction activity. We propose that traversing filopodia are employed by mitotic mTE cells to receive the required signals for cell division after they become distant to the ICM.


BMP7 Induces Uterine Receptivity and Blastocyst Attachment.

  • Diana Monsivais‎ et al.
  • Endocrinology‎
  • 2017‎

In women, the window of implantation is limited to a brief 2- to 3-day period characterized by optimal levels of circulating ovarian hormones and a receptive endometrium. Although the window of implantation is assumed to occur 8 to 10 days after ovulation in women, molecular markers of endometrial receptivity are necessary to determine optimal timing prior to embryo transfer. Previous studies showed that members of the bone morphogenetic protein (BMP) family are expressed in the uterus necessary for female fertility; however, the role of BMP7 during implantation and in late gestation is not known. To determine the contribution of BMP7 to female fertility, we generated Bmp7flox/flox-Pgr-cre+/- [BMP7 conditional knockout (cKO)] mice. We found that absence of BMP7 in the female reproductive tract resulted in subfertility due to uterine defects. At the time of implantation, BMP7 cKO females displayed a nonreceptive endometrium with elevated estrogen-dependent signaling. These implantation-related defects also affected decidualization and resulted in decreased expression of decidual cell markers such as Wnt4, Cox2, Ereg, and Bmp2. We also observed placental abnormalities in pregnant Bmp7 cKO mice, including excessive parietal trophoblast giant cells and absence of a mature placenta at 10.5 days post coitum. To establish possible redundant roles of BMP5 and BMP7 during pregnancy, we generated double BMP5 knockout/BMP7 cKO [BMP5/7 double knockout (DKO)] mice; however, we found that the combined deletion had no additive disruptive effect on fertility. Our studies indicate that BMP7 is an important factor during the process of implantation that contributes to healthy embryonic development.


RNA element discovery from germ cell to blastocyst.

  • Molly S Estill‎ et al.
  • Nucleic acids research‎
  • 2019‎

Recent studies have shown that tissue-specific transcriptomes contain multiple types of RNAs that are transcribed from intronic and intergenic sequences. The current study presents a tool for the discovery of transcribed, unannotated sequence elements from RNA-seq libraries. This RNA Element (RE) discovery algorithm (REDa) was applied to a spectrum of tissues and cells representing germline, embryonic, and somatic tissues and examined as a function of differentiation through the first set of cell divisions of human development. This highlighted extensive transcription throughout the genome, yielding previously unidentified human spermatogenic RNAs. Both exonic and novel X-chromosome REs were subject to robust meiotic sex chromosome inactivation, although an extensive de-repression occurred in the post-meiotic stages of spermatogenesis. Surprisingly, 2.4% of the 10,395 X chromosome exonic REs were present in mature sperm. Transcribed genomic repetitive sequences, including simple centromeric repeats, HERVE and HSAT1, were also shown to be associated with RE expression during spermatogenesis. These results suggest that pervasive intergenic repetitive sequence expression during human spermatogenesis may play a role in regulating chromatin dynamics. Repetitive REs switching repeat classes during differentiation upon fertilization and embryonic genome activation was evident.


Notch signaling in mouse blastocyst development and hatching.

  • Mariana R Batista‎ et al.
  • BMC developmental biology‎
  • 2020‎

Mammalian early embryo development requires a well-orchestrated interplay of cell signaling pathways. Notch is a major regulatory pathway involved in cell-fate determination in embryonic and adult scenarios. However, the role of Notch in embryonic pre-implantation development is controversial. In particular, Notch role on blastocyst development and hatching remains elusive, and a complete picture of the transcription and expression patterns of Notch components during this time-period is not available.


Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts.

  • Viju Vijayan Pillai‎ et al.
  • Biology open‎
  • 2019‎

Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.


Human endometrial CD98 is essential for blastocyst adhesion.

  • Francisco Domínguez‎ et al.
  • PloS one‎
  • 2010‎

Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans.


FGFR1 regulates trophectoderm development and facilitates blastocyst implantation.

  • Agata Kurowski‎ et al.
  • Developmental biology‎
  • 2019‎

FGF signaling plays important roles in many aspects of mammalian development. Fgfr1-/- and Fgfr1-/-Fgfr2-/- mouse embryos on a 129S4 co-isogenic background fail to survive past the peri-implantation stage, whereas Fgfr2-/- embryos die at midgestation and show defects in limb and placental development. To investigate the basis for the Fgfr1-/- and Fgfr1-/-Fgfr2-/- peri-implantation lethality, we examined the role of FGFR1 and FGFR2 in trophectoderm (TE) development. In vivo, Fgfr1-/- TE cells failed to downregulate CDX2 in the mural compartment and exhibited abnormal apicobasal E-Cadherin polarity. In vitro, we were able to derive mutant trophoblast stem cells (TSCs) from Fgfr1-/- or Fgfr2-/- single mutant, but not from Fgfr1-/-Fgfr2-/- double mutant blastocysts. Fgfr1-/- TSCs however failed to efficiently upregulate TE differentiation markers upon differentiation. These results suggest that while the TE is specified in Fgfr1-/- mutants, its differentiation abilities are compromised leading to defects at implantation.


Impaired Blastocyst Formation in Lnx2-Knockdown Mouse Embryos.

  • Seung-Jae Lee‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Ligand of Numb-protein X 2 (LNX2) is an E3 ubiquitin ligase that is known to regulate Notch signaling by participating in NUMB protein degradation. Notch signaling is important for differentiation and proliferation in mammals, and plays a significant role in blastocyst formation during early embryonic development. In this study, we investigated Lnx2 in mouse preimplantation embryos. Expression analysis showed that Lnx2 is expressed in oocytes and preimplantation embryos. Lnx2-knockdown embryos normally progress to the morula stage, but the majority of them do not develop into normal blastocysts. Transcript analysis revealed that the expression levels of genes critical for cell lineage specification, including octamer-binding transcription factor 4 (Oct4), are increased in Lnx2 knockdown embryos. Furthermore, the expression levels of Notch and Hippo signaling-related genes are also increased by Lnx2 knockdown. Collectively, our results show that Lnx2 is important for blastocyst formation in mice, suggest that this may act via lineage specification of inner cell mass, and further show that Lnx2 may be involved in transcriptionally regulating various genes implicated in early embryonic development.


Bovine blastocyst-like structures derived from stem cell cultures.

  • Carlos A Pinzón-Arteaga‎ et al.
  • Cell stem cell‎
  • 2023‎

Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.


Human blastocyst outgrowths recapitulate primordial germ cell specification events.

  • Mina Popovic‎ et al.
  • Molecular human reproduction‎
  • 2019‎

Our current knowledge of the mechanisms leading to human primordial germ cell (PGC) specification stems solely from differentiation experiments starting from human pluripotent stem cells. However, information regarding the origin of PGCs in vivo remains obscure. Here we apply an improved system for extended in vitro culture of human embryos to investigate the presence of PGC-like cells (PGCLCs) 12 days post fertilization (dpf). Good quality blastocysts (n = 141) were plated at 6 dpf and maintained in hypoxia, in medium supplemented with Activin A until 12 dpf. We primarily reveal that 12 dpf outgrowths recapitulate human peri-implantation events and demonstrate that blastocyst quality significantly impacts both embryo viability at 12 dpf, as well as the presence of POU5F1+ cells within viable outgrowths. Moreover, detailed examination of 12 dpf blastocyst outgrowths revealed a population of POU5F1+, SOX2- and SOX17+ cells that may correspond to PGCLCs, alongside POU5F1+ epiblast-like cells and GATA6+ endoderm-like cells. Our findings suggest that, in human, PGC precursors may become specified within the epiblast and migrate either transiently to the extra-embryonic mesoderm or directly to the dorsal part of the yolk sac endoderm around 12 dpf. This is a descriptive analysis and as such the conclusion that POU5F1+ and SOX17+ cells represent bona fide PGCs can only be considered as preliminary. In the future, other PGC markers may be used to further validate the observed cell populations. Overall, our findings provide insights into the origin of the human germline and may serve as a foundation to further unravel the molecular mechanisms governing PGC specification in human.


Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation.

  • Bradford W Daigneault‎ et al.
  • Scientific reports‎
  • 2018‎

POU5F1 is a transcription factor and master regulator of cell pluripotency with indispensable roles in early embryo development and cell lineage specification. The role of embryonic POU5F1 in blastocyst formation and cell lineage specification differs between mammalian species but remains completely unknown in cattle. The CRISPR/Cas9 system was utilized for targeted disruption of the POU5F1 gene by direct injection into zygotes. Disruption of the bovine POU5F1 locus prevented blastocyst formation and was associated with embryonic arrest at the morula stage. POU5F1 knockout morulas developed at a similar rate as control embryos and presented a similar number of blastomeres by day 5 of development. Initiation of SOX2 expression by day 5 of development was not affected by lack of POU5F1. On the other hand, CDX2 expression was aberrant in embryos lacking POU5F1. Notably, the phenotype observed in bovine POU5F1 knockout embryos reveals conserved functions associated with loss of human embryonic POU5F1 that differ from Pou5f1- null mice. The similarity observed in transcriptional regulation of early embryo development between cattle and humans combined with highly efficient gene editing techniques make the bovine a valuable model for human embryo biology with expanded applications in agriculture and assisted reproductive technologies.


Ex utero monkey embryogenesis from blastocyst to early organogenesis.

  • Yandong Gong‎ et al.
  • Cell‎
  • 2023‎

The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.


Generating human blastoids modeling blastocyst-stage embryos and implantation.

  • Heidar Heidari Khoei‎ et al.
  • Nature protocols‎
  • 2023‎

Human early development sets the stage for embryonic and adult life but remains difficult to investigate. A solution came from the ability of stem cells to organize into structures resembling preimplantation embryos-blastocysts-that we termed blastoids. This embryo model is available in unlimited numbers and could thus support scientific and medical advances. However, its predictive power depends on how faithfully it recapitulates the blastocyst. Here, we describe how we formed human blastoids that (1) efficiently achieve the morphology of the blastocyst and (2) form lineages according to the pace and sequence of blastocyst development, (3) ultimately forming cells that transcriptionally reflect the blastocyst (preimplantation stage). We employ three different commercially available 96- and 24-well microwell plates with results similar to our custom-made ones, and show that blastoids form in clinical in vitro fertilization medium and can be cryopreserved for shipping. Finally, we explain how blastoids replicate the directional process of implantation into endometrial organoids, specifically when these are hormonally stimulated. It takes 4 d for human blastoids to form and 10 d to prepare the endometrial implantation assay, and we have cultured blastoids up to 6 d (time-equivalent of day 13). On the basis of our experience, we anticipate that a person with ~1 year of human pluripotent stem cell culture experience and of organoid culture should be able to perform the protocol. Altogether, blastoids offer an opportunity to establish scientific and biomedical discovery programs for early pregnancy, and an ethical alternative to the use of embryos.


Effect of blastocyst shrinkage on assisted reproductive outcomes: a retrospective cohort study describing a new morphological evaluation of blastocyst pre-vitrification and post-warming.

  • Ayumo Ito‎ et al.
  • Journal of ovarian research‎
  • 2023‎

The failure of frozen-thawed blastocysts to re-expand adequately within a few hours after warming has been reported to have a negative impact on assisted reproductive technology (ART) outcomes. However, the extent to which this failure truly affects ART outcomes has not yet been presented in a manner that is easily understandable to medical practitioners and patients. This study aimed to assess the effects of blastocyst shrinkage on ART outcomes and determine a more effective morphological evaluation approach for use in clinical settings.


Does dysbiotic endometrium affect blastocyst implantation in IVF patients?

  • Tomoko Hashimoto‎ et al.
  • Journal of assisted reproduction and genetics‎
  • 2019‎

To analyze the pregnancy outcomes of IVF patients presenting eubiotic or dysbiotic endometrium at the time of embryo transfer and to analyze what bacterial profiles are suitable for embryo implantation.


Nr5a2 ensures inner cell mass formation in mouse blastocyst.

  • Yanhua Zhao‎ et al.
  • Cell reports‎
  • 2024‎

Recent studies have elucidated Nr5a2's role in activating zygotic genes during early mouse embryonic development. Subsequent research, however, reveals that Nr5a2 is not critical for zygotic genome activation but is vital for the gene program between the 4- and 8-cell stages. A significant gap exists in experimental evidence regarding its function during the first lineage differentiation's pivotal period. In this study, we observed that approximately 20% of embryos developed to the blastocyst stage following Nr5a2 ablation. However, these blastocysts lacked inner cell mass (ICM), highlighting Nr5a2's importance in first lineage differentiation. Mechanistically, using RNA sequencing and CUT&Tag, we found that Nr5a2 transcriptionally regulates ICM-specific genes, such as Oct4, to establish the pluripotent network. Interference with or overexpression of Nr5a2 in single blastomeres of 2-cell embryos can alter the fate of daughter cells. Our results indicate that Nr5a2 works as a doorkeeper to ensure ICM formation in mouse blastocyst.


A retrospective study of single frozen-thawed blastocyst transfer.

  • Yong Soo Hur‎ et al.
  • Clinical and experimental reproductive medicine‎
  • 2016‎

To study the clinical outcomes of single frozen-thawed blastocyst transfer cycles according to the hatching status of frozen-thawed blastocysts.


Wdr74 is required for blastocyst formation in the mouse.

  • Marc Maserati‎ et al.
  • PloS one‎
  • 2011‎

Preimplantation is a dynamic developmental period during which a combination of maternal and zygotic factors program the early embryo resulting in lineage specification and implantation. A reverse genetic RNAi screen in mouse embryos identified the WD Repeat Domain 74 gene (Wdr74) as being required for these critical first steps of mammalian development. Knockdown of Wdr74 results in embryos that develop normally until the morula stage but fail to form blastocysts or properly specify the inner cell mass and trophectoderm. In Wdr74-deficient embryos, we find activated Trp53-dependent apoptosis as well as a global reduction of RNA polymerase I, II and III transcripts. In Wdr74-deficient embryos blocking Trp53 function rescues blastocyst formation and lineage differentiation. These results indicate that Wdr74 is required for RNA transcription, processing and/or stability during preimplantation development and is an essential gene in the mouse.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: