Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,412 papers

Asphaltene biotransformation for heavy oil upgradation.

  • Arif Nissar Zargar‎ et al.
  • AMB Express‎
  • 2021‎

Globally, the reserves of heavy crude oil are seven times more abundant than that of light crude, and yet, they are underutilized because of their high viscosity and density, which is largely due to the presence of large amounts of asphaltenes. Biotransformation of heavy oil asphaltenes into smaller metabolites can be used for reducing their viscosity. Several microorganisms capable of asphaltene biodegradation have been reported but only few have been characterized for its biotransformation. In the present study, a 9-membered microbial consortium was isolated from an oil contaminated soil. About 72% and 75% asphaltene biotransformation was achieved by growing cells at shake flask level and in a 1.5 l bioreactor, respectively. A representative structure of asphaltene was constructed based on LC-MS, 1H-NMR, 13C-NMR, FT-IR, ICPMS and elemental analysis (CHNS) of n-heptane purified asphaltene from Maya crude oil. Biotransformation of asphaltene, as analyzed by performing 1H-NMR, FT-IR and elemental analysis, resulted in 80% decrease in S and N when compared to the control along with incorporation of oxygen in the structure of asphaltene. About 91% decrease in the viscosity of the Maya crude oil was observed after two weeks when oil: aqueous phase ratio was 1:9. The results suggest that the isolated microbial consortium can be used for biological upgradation of heavy crude oil. To our knowledge, this is the first report where a microbial consortium resulted in such high asphaltene biotransformation.


Bioproduction of ribavirin by green microbial biotransformation.

  • Cintia W Rivero‎ et al.
  • Process biochemistry (Barking, London, England)‎
  • 2015‎

Ribavirin is an antiviral compound widely used in Hepatitis C Virus therapy. Biotransformation of this nucleoside analogue using Escherichia coli ATCC 12407 as biocatalyst is herein reported. Reaction parameters such as microorganism amounts, substrate ratio and temperature were optimized reaching conversion yields of 86%. Biocatalyst stability was enhanced by immobilization in agarose matrix. This immobilized biocatalyst was able to be reused for more than 270 h and could be stored during more than 4 months without activity loss. Batch and packed-bed reactors based on a stabilized biocatalyst were assayed for bioprocess scale-up. A continuous sustainable bioprocess was evaluated using a prototype packed-bed reactor, which allowed to produce 95 mg of ribavirin. Finally, in this work an efficient green bioprocess for ribavirin bioproduction using a stabilized biocatalyst was developed.


PFAS Biotransformation Pathways: A Species Comparison Study.

  • Richard C Kolanczyk‎ et al.
  • Toxics‎
  • 2023‎

Limited availability of fish metabolic pathways for PFAS may lead to risk assessments with inherent uncertainties based only upon the parent chemical or the assumption that the biodegradation or mammalian metabolism map data will serve as an adequate surrogate. A rapid and transparent process, utilizing a recently created database of systematically collected information for fish, mammals, poultry, plant, earthworm, sediment, sludge, bacteria, and fungus using data evaluation tools in the previously described metabolism pathway software system MetaPath, is presented. The fish metabolism maps for 10 PFAS, heptadecafluorooctyl(tridecafluorohexyl)phosphinic acid (C6/C8 PFPiA), bis(perfluorooctyl)phosphinic acid (C8/C8 PFPiA), 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), N-Ethylperfluorooctane-1-sulfonamide (Sulfuramid; N-EtFOSA), N-Ethyl Perfluorooctane Sulfonamido Ethanol phosphate diester (SAmPAP), Perfluorooctanesulfonamide (FOSA), 8:2 Fluorotelomer phosphate diester (8:2 diPAP), 8:2 fluorotelomer alcohol (8:2 FTOH), 10:2 fluorotelomer alcohol (10:2 FTOH), and 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), were compared across multiple species and systems. The approach demonstrates how comparisons of metabolic maps across species are aided by considering the sample matrix in which metabolites were quantified for each species, differences in analytical methods used to identify metabolites in each study, and the relative amounts of metabolites quantified. Overall, the pathways appear to be well conserved across species and systems. For PFAS lacking a fish metabolism study, a composite map consisting of all available maps would serve as the best basis for metabolite prediction. This emphasizes the importance and utility of collating metabolism into a searchable database such as that created in this effort.


Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota.

  • Kateřina Valentová‎ et al.
  • Metabolites‎
  • 2020‎

Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor.


Mapping the Biotransformation of Coumarins through Filamentous Fungi.

  • Jainara Santos do Nascimento‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Natural coumarins are present in remarkable amounts as secondary metabolites in edible and medicinal plants, where they display interesting bioactivities. Considering the wide enzymatic arsenal of filamentous fungi, studies on the biotransformation of coumarins using these microorganisms have great importance in green chemical derivatization. Several reports on the biotransformation of coumarins using fungi have highlighted the achievement of chemical analogs with high selectivity by using mild and ecofriendly conditions. Prompted by the enormous pharmacological, alimentary, and chemical interest in coumarin-like compounds, this study evaluated the biotransformation of nine coumarin scaffolds using Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis ATCC 16404. The chemical reactions which were catalyzed by the microorganisms were highly selective. Among the nine studied coumarins, only two of them were biotransformed. One of the coumarins, 7-hydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one, was biotransformed into the new 7,9-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one, which was generated by selective hydroxylation in an unactivated carbon. Our results highlight some chemical features of coumarin cores that are important to biotransformation using filamentous fungi.


Production of anti-cancer agent using microbial biotransformation.

  • Changhyun Roh‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L) jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields) from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa). It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.


Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species.

  • Ewa Kozłowska‎ et al.
  • Scientific reports‎
  • 2018‎

Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.


Biotransformation of Penindolone, an Influenza A Virus Inhibitor.

  • Shuai Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Penindolone (PND) is a novel broad-spectrum anti-Influenza A Virus (IAV) agent blocking hemagglutinin-mediated adsorption and membrane fusion. The goal of this work was to reveal the metabolic route of PND in rats. Ultra-high-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS) was used for metabolite identification in rat bile, feces and urine after administration of PND. A total of 25 metabolites, including 9 phase I metabolites and 16 phase II metabolites, were characterized. The metabolic pathways were proposed, and metabolites were visualized via Global Natural Product Social Molecular Networking (GNPS). It was found that 65.24-80.44% of the PND presented in the formation of glucuronide conjugate products in bile, and more than 51% of prototype was excreted through feces. In in vitro metabolism of PND by rat, mouse and human liver microsomes (LMs) system, PND was discovered to be eliminated in LMs to different extents with significant species differences. The effects of chemical inhibitors of isozymes on the metabolism of PND in vitro indicated that CYP2E1/2C9/3A4 and UGT1A1/1A6/1A9 were the metabolic enzymes responsible for PND metabolism. PND metabolism in vivo could be blocked by UGTs inhibitor (ibrutinib) to a certain extent. These findings provided a basis for further research and development of PND.


Biotransformation of Methoxyflavones by Selected Entomopathogenic Filamentous Fungi.

  • Mateusz Łużny‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The synthesis and biotransformation of five flavones containing methoxy substituents in the B ring: 2'-, 3'-, 4'-methoxyflavones, 2',5'-dimethoxyflavone and 3',4',5'-trimethoxyflavone are described. Strains of entomopathogenic filamentous fungi were used as biocatalysts. Five strains of the species Beauveria bassiana (KCh J1.5, J2.1, J3.2, J1, BBT), two of the species Beauveria caledonica (KCh J3.3, J3.4), one of Isaria fumosorosea (KCh J2) and one of Isaria farinosa (KCh KW 1.1) were investigated. Both the number and the place of attachment of the methoxy groups in the flavonoid structure influenced the biotransformation rate and the amount of nascent products. Based on the structures of products and semi-products, it can be concluded that their formation is the result of a cascading process. As a result of enzymes produced in the cells of the tested strains, the test compounds undergo progressive demethylation and/or hydroxylation and 4-O-methylglucosylation. Thirteen novel flavonoid 4-O-methylglucosides and five hydroxy flavones were isolated and identified.


Cellular photo(geno)toxicity of gefitinib after biotransformation.

  • Meryem El Ouardi‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Gefitinib (GFT) is a selective epidermal growth factor receptor (EGFR) inhibitor clinically used for the treatment of patients with non-small cell lung cancer. Bioactivation by mainly Phase I hepatic metabolism leads to chemically reactive metabolites such as O-Demethyl gefitinib (DMT-GFT), 4-Defluoro-4-hydroxy gefitinib (DF-GFT), and O-Demorpholinopropyl gefitinib (DMOR-GFT), which display an enhanced UV-light absorption. In this context, the aim of the present study is to investigate the capability of gefitinib metabolites to induce photosensitivity disorders and to elucidate the involved mechanisms. According to the neutral red uptake (NRU) phototoxicity test, only DF-GFT metabolite can be considered non-phototoxic to cells with a photoirritation factor (PIF) close to 1. Moreover, DMOR-GFT is markedly more phototoxic than the parent drug (PIF = 48), whereas DMT-GFT is much less phototoxic (PIF = 7). Using the thiobarbituric acid reactive substances (TBARS) method as an indicator of lipid photoperoxidation, only DMOR-GFT has demonstrated the ability to photosensitize this process, resulting in a significant amount of TBARS (similar to ketoprofen, which was used as the positive control). Protein photooxidation monitored by 2,4-dinitrophenylhydrazine (DNPH) derivatization method is mainly mediated by GFT and, to a lesser extent, by DMOR-GFT; in contrast, protein oxidation associated with DMT-GFT is nearly negligible. Interestingly, the damage to cellular DNA as revealed by the comet assay, indicates that DMT-GFT has the highest photogenotoxic potential; moreover, the DNA damage induced by this metabolite is hardly repaired by the cells after a time recovery of 18 h. This could ultimately result in mutagenic and carcinogenic effects. These results could aid oncologists when prescribing TKIs to cancer patients and, thus, establish the conditions of use and recommend photoprotection guidelines.


Salt mine microorganisms used for the biotransformation of chlorolactones.

  • Wanda Mączka‎ et al.
  • PloS one‎
  • 2018‎

The aim of the project was to find new catalysts capable of chlorolactone biotransformation. Three bicyclic chlorolactones with structures possessing one or two methyl groups in their cyclohexane ring were subjected to screening biotransformation using seven bacterial strains and one fungal strain from a salt mine. Three strains of bacteria (Micrococcus luteus Pb10, Micrococcus luteus WSP45, Gordonia alkanivorans Pd25) and one fungal strain (Aspergillus sydowii KGJ10) were able to catalyse hydrolytic dehalogenation of one substrate. The classification of the strains that were effective biocatalysts was confirmed by 16S rDNA analysis. The best result (76%) was obtained using Aspergillus sydowii KGJ10. All strains catalysed hydrolytic dehalogenation without changing the conformation. The equatorial position of the chlorine atom in the substrate turned out to be warrant of the positive result of the biotransformation process.


Glutathione-mediated biotransformation in the liver modulates nanoparticle transport.

  • Xingya Jiang‎ et al.
  • Nature nanotechnology‎
  • 2019‎

Glutathione-mediated biotransformation in the liver is a well-known detoxification process to eliminate small xenobiotics, but its impacts on nanoparticle retention, targeting and clearance are much less understood than liver macrophage uptake, even though both processes are involved in liver detoxification. By designing a thiol-activatable fluorescent gold nanoprobe that can bind to serum protein and be transported to the liver, we non-invasively imaged the biotransformation kinetics in vivo at high specificity and examined this process at the chemical level. Our results show that glutathione efflux from hepatocytes results in high local concentrations of both glutathione and cysteine in liver sinusoids, which transforms the nanoparticle surface chemistry, reduces its affinity to serum protein and significantly alters its blood retention, targeting and clearance. With this biotransformation, liver detoxification, a long-standing barrier in nanomedicine translation, can be turned into a bridge toward maximizing targeting and minimizing nanotoxicity.


Microbial biotransformation of DON: molecular basis for reduced toxicity.

  • Alix Pierron‎ et al.
  • Scientific reports‎
  • 2016‎

Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.


Biotransformation of Monocyclic Phenolic Compounds by Bacillus licheniformis TAB7.

  • Enock Mpofu‎ et al.
  • Microorganisms‎
  • 2019‎

Bacillus licheniformis strain TAB7 is a bacterium used as a commercial deodorizing agent for compost in Japan. In this work, its ability to biotransform the following monocyclic phenolic compounds was assessed: ferulate, vanillate, p-coumarate, caffeate, protocatechuate, syringate, vanillin, and cinnamate (a precursor for some phenolic compounds). These compounds are abundant in composting material and are reported to have allelopathic properties. They come from sources such as plant material decomposition or agro-industrial waste. Biotransformation assays were carried out in LB supplemented with 0.2 mg/mL of an individual phenolic compound and incubated for up to 15 days followed by extraction and HPLC analysis. The results showed that TAB7 could biotransform ferulate, caffeate, p-coumarate, vanillate, protocatechuate, and vanillin. It, however, had a poor ability to transform cinnamate and syringate. LC-MS/MS analysis showed that ferulate was transformed into 4-vinylguaiacol as the final product, while caffeate was transformed into 4-ethylcatechol. TAB7 genome analysis suggested that, while TAB7 may not mineralize phenolic compounds, it harbored genes possibly encoding phenolic acid decarboxylase, vanillate decarboxylase, and some protocatechuate degradation pathway enzymes, which are involved in the catabolism of phenolic compounds known to have negative allelopathy on some plants. The results thus suggested that TAB7 can reduce such phenolic compounds in compost.


Biotransformation of steroids by entomopathogenic strains of Isaria farinosa.

  • Ewa Kozłowska‎ et al.
  • Microbial cell factories‎
  • 2018‎

Steroid compounds are very interesting substrates for biotransformation due to their high biological activity and a high number of inactivated carbons which make chemical modification difficult. Microbial transformation can involve reactions which are complicated and uneconomical in chemical synthesis, and searching for a new effective biocatalyst is necessary. The best known entomopathogenic species used in steroid modification is Beauveria bassiana. In this study we tested the ability of Isaria farinosa, another entomopathogenic species, to transform several steroids.


Significant Biotransformation of Arsenobetaine into Inorganic Arsenic in Mice.

  • Jichao Zhang‎ et al.
  • Toxics‎
  • 2023‎

Arsenic (As) is extremely toxic to living organisms at high concentrations. Arsenobetaine (AsB), confirmed to be a non-toxic form, is the main contributor to As in the muscle tissue of marine fish. However, few studies have investigated the biotransformation and biodegradation of AsB in mammals. In the current study, C57BL/6J mice were fed four different diets, namely, Yangjiang and Zhanjiang fish diets spiked with marine fish muscle containing AsB, and arsenite (As(III)) and arsenate (As(V)) diets spiked with As(III) and As(V), respectively, to investigate the biotransformation and bioaccumulation of AsB in mouse tissues for 42 d. Different diets exhibited different As species distributions, which contributed to varying levels of As bioaccumulation in different tissues. The intestines accumulated the highest level of As, regardless of form, which played a major part in As absorption and distribution in mice. We observed a significant biotransformation of AsB to As(V) following its diet exposure, and the liver, lungs, and spleen of AsB-treated mice showed higher As accumulation levels than those of As(III)- or As(V)-treated mice. Inorganic As showed relatively high accumulation levels in the lungs and spleen after long-term exposure to AsB. Overall, these findings provided strong evidence that AsB undergoes biotransformation to As(V) in mammals, indicating the potential health risk associated with long-term AsB intake in mammals.


Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum.

  • Bang-Yan Wang‎ et al.
  • Journal of ginseng research‎
  • 2020‎

Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity.


Biotransformation enzyme expression in the nasal epithelium of woodrats.

  • Michele M Skopec‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2013‎

When herbivores come in contact with volatile plant secondary compounds (PSC) that enter the nasal passages the only barrier between the nasal cavity and the brain is the nasal epithelium and the biotransformation enzymes present there. The expression of two biotransformation enzymes Cytochrome P450 2B (CYP2B) and glutathione-S-transferase (GST) was investigated in the nasal epithelia and livers of three populations of woodrats. One population of Neotoma albigula was fed juniper that contains volatile terpenes. Juniper caused upregulation of CYP2B and GST in the nasal epithelium and the expression of CYP2B and GST in the nasal epithelium was correlated to liver expression, showing that the nasal epithelia responds to PSC and the response is similar to the liver. Two populations of Neotoma bryanti were fed creosote that contains less volatile phenolics. The creosote naive animals upregulated CYP2B in their nasal epithelia while the creosote experienced animals upregulated GST. There was no correlation between CYP2B and GST expression in the nasal epithelia and livers of either population. The response of the nasal epithelium to PSC seems to be an evolved response that is PSC and experience dependent.


FABP1 controls hepatic transport and biotransformation of Δ9-THC.

  • Matthew W Elmes‎ et al.
  • Scientific reports‎
  • 2019‎

The increasing use of medical marijuana highlights the importance of developing a better understanding of cannabinoid metabolism. Phytocannabinoids, including ∆9-tetrahydrocannabinol (THC), are metabolized and inactivated by cytochrome P450 enzymes primarily within the liver. The lipophilic nature of cannabinoids necessitates mechanism(s) to facilitate their intracellular transport to metabolic enzymes. Here, we test the central hypothesis that liver-type fatty acid binding protein (FABP1) mediates phytocannabinoid transport and subsequent inactivation. Using X-ray crystallography, molecular modeling, and in vitro binding approaches we demonstrate that FABP1 accommodates one molecule of THC within its ligand binding pocket. Consistent with its role as a THC carrier, biotransformation of THC was reduced in primary hepatocytes obtained from FABP1-knockout (FABP1-KO) mice. Compared to their wild-type littermates, administration of THC to male and female FABP1-KO mice potentiated the physiological and behavioral effects of THC. The stark pharmacodynamic differences were confirmed upon pharmacokinetic analyses which revealed that FABP1-KO mice exhibit reduced rates of THC biotransformation. Collectively, these data position FABP1 as a hepatic THC transport protein and a critical mediator of cannabinoid inactivation. Since commonly used medications bind to FABP1 with comparable affinities to THC, our results further suggest that FABP1 could serve a previously unrecognized site of drug-drug interactions.


Cascade biotransformation of estrogens by Isaria fumosorosea KCh J2.

  • Ewa Kozłowska‎ et al.
  • Scientific reports‎
  • 2019‎

Estrone, estradiol, ethynylestradiol and estrone 3-methyl ether underwent a biotransformation process in the submerged culture of Isaria fumosorosea KCh J2. Estrone was transformed into seven metabolites, four of which were glycosylated. Estradiol was selectively glycosylated at C-3 and then transformed to D-ring lactone. Ethynylestradiol was coupled with methylglucoside and 6β-hydroxyderivative was obtained. Estrone 3-methyl ether was not transformed indicating that a free hydroxyl group at C-3 is necessary for glycosylation. Baeyer-Villiger oxidation combined with hydroxylation and glycosylation was observed. All glycosides obtained in this study are 3-O-β-methylglucosides.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: