Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34,945 papers

The evolution of the protein synthesis system, II. From chemical evolution to biological evolution.

  • H Mizutani‎ et al.
  • Origins of life‎
  • 1980‎

The sequence of events previously proposed for modern protein synthesis is reviewed. It begins with an abiological synthesis of a template, and evolves through two model autocatalytic systems to a primitive cell that has a rudimentary biological protein synthesis system. A possible scheme for the origin of tRNA's is described so as to fill the gap between the model and the modern system. Fragments of genes that existed in and around the primitive system are proposed to be precursors of tRNA's. Since these fragments must have been undesirable components for the system, the origin and evolution of tRNA's may be regarded as an excellent answer by the primitive system to adverse circumstances.


INDELible: a flexible simulator of biological sequence evolution.

  • William Fletcher‎ et al.
  • Molecular biology and evolution‎
  • 2009‎

Many methods exist for reconstructing phylogenies from molecular sequence data, but few phylogenies are known and can be used to check their efficacy. Simulation remains the most important approach to testing the accuracy and robustness of phylogenetic inference methods. However, current simulation programs are limited, especially concerning realistic models for simulating insertions and deletions. We implement a portable and flexible application, named INDELible, for generating nucleotide, amino acid and codon sequence data by simulating insertions and deletions (indels) as well as substitutions. Indels are simulated under several models of indel-length distribution. The program implements a rich repertoire of substitution models, including the general unrestricted model and nonstationary nonhomogeneous models of nucleotide substitution, mixture, and partition models that account for heterogeneity among sites, and codon models that allow the nonsynonymous/synonymous substitution rate ratio to vary among sites and branches. With its many unique features, INDELible should be useful for evaluating the performance of many inference methods, including those for multiple sequence alignment, phylogenetic tree inference, and ancestral sequence, or genome reconstruction.


SimSpliceEvol: alternative splicing-aware simulation of biological sequence evolution.

  • Esaie Kuitche‎ et al.
  • BMC bioinformatics‎
  • 2019‎

It is now well established that eukaryotic coding genes have the ability to produce more than one type of transcript thanks to the mechanisms of alternative splicing and alternative transcription. Because of the lack of gold standard real data on alternative splicing, simulated data constitute a good option for evaluating the accuracy and the efficiency of methods developed for splice-aware sequence analysis. However, existing sequence evolution simulation methods do not model alternative splicing, and so they can not be used to test spliced sequence analysis methods.


Mitochondrial selfish elements and the evolution of biological novelties.

  • Liliana Milani‎ et al.
  • Current zoology‎
  • 2016‎

We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nuclei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sexual differentiation. We propose a testable model that describes how the acquisition of selfish features by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bivalves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transition state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins.


Evolution of the U.S. Biological Select Agent Rathayibacter toxicus.

  • Edward W Davis‎ et al.
  • mBio‎
  • 2018‎

Rathayibacter toxicus is a species of Gram-positive, corynetoxin-producing bacteria that causes annual ryegrass toxicity, a disease often fatal to grazing animals. A phylogenomic approach was employed to model the evolution of R. toxicus to explain the low genetic diversity observed among isolates collected during a 30-year period of sampling in three regions of Australia, gain insight into the taxonomy of Rathayibacter, and provide a framework for studying these bacteria. Analyses of a data set of more than 100 sequenced Rathayibacter genomes indicated that Rathayibacter forms nine species-level groups. R. toxicus is the most genetically distant, and evidence suggested that this species experienced a dramatic event in its evolution. Its genome is significantly reduced in size but is colinear to those of sister species. Moreover, R. toxicus has low intergroup genomic diversity and almost no intragroup genomic diversity between ecologically separated isolates. R. toxicus is the only species of the genus that encodes a clustered regularly interspaced short palindromic repeat (CRISPR) locus and that is known to host a bacteriophage parasite. The spacers, which represent a chronological history of infections, were characterized for information on past events. We propose a three-stage process that emphasizes the importance of the bacteriophage and CRISPR in the genome reduction and low genetic diversity of the R. toxicus species.IMPORTANCERathayibacter toxicus is a toxin-producing species found in Australia and is often fatal to grazing animals. The threat of introduction of the species into the United States led to its inclusion in the Federal Select Agent Program, which makes R. toxicus a highly regulated species. This work provides novel insights into the evolution of R. toxicusR. toxicus is the only species in the genus to have acquired a CRISPR adaptive immune system to protect against bacteriophages. Results suggest that coexistence with the bacteriophage NCPPB3778 led to the massive shrinkage of the R. toxicus genome, species divergence, and the maintenance of low genetic diversity in extant bacterial groups. This work contributes to an understanding of the evolution and ecology of an agriculturally important species of bacteria.


An alternative path for the evolution of biological nitrogen fixation.

  • Eric S Boyd‎ et al.
  • Frontiers in microbiology‎
  • 2011‎

Nitrogenase catalyzed nitrogen fixation is the process by which life converts dinitrogen gas into fixed nitrogen in the form of bioavailable ammonia. The most common form of nitrogenase today requires a complex metal cluster containing molybdenum (Mo), although alternative forms exist which contain vanadium (V) or only iron (Fe). It has been suggested that Mo-independent forms of nitrogenase (V and Fe) were responsible for N(2) fixation on early Earth because oceans were Mo-depleted and Fe-rich. Phylogenetic- and structure-based examinations of multiple nitrogenase proteins suggest that such an evolutionary path is unlikely. Rather, our results indicate an evolutionary path whereby Mo-dependent nitrogenase emerged within the methanogenic archaea and then gave rise to the alternative forms suggesting that they arose later, perhaps in response to local Mo limitation. Structural inferences of nitrogenase proteins and related paralogs suggest that the ancestor of all nitrogenases had an open cavity capable of binding metal clusters which conferred reactivity. The evolution of the nitrogenase ancestor and its associated bound metal cluster was controlled by the availability of fixed nitrogen in combination with local environmental factors that influenced metal availability until a point in Earth's geologic history where the most desirable metal, Mo, became sufficiently bioavailable to bring about and refine the solution (Mo-nitrogenase) we see perpetuated in extant biology.


Impact of constitutional copy number variants on biological pathway evolution.

  • Maria Poptsova‎ et al.
  • BMC evolutionary biology‎
  • 2013‎

Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data.


Biological and therapeutic impact of intratumor heterogeneity in cancer evolution.

  • Nicholas McGranahan‎ et al.
  • Cancer cell‎
  • 2015‎

Precision medicine requires an understanding of cancer genes and mutational processes, as well as an appreciation of the extent to which these are found heterogeneously in cancer cells during tumor evolution. Here, we explore the processes shaping the cancer genome, placing these within the context of tumor evolution and their impact on intratumor heterogeneity and drug development. We review evidence for constraints and contingencies to tumor evolution and highlight the clinical implications of diversity within tumors. We outline the limitations of genome-driven targeted therapies and explore future strategies, including immune and adaptive approaches, to address this therapeutic challenge.


Discovering local patterns of co-evolution: computational aspects and biological examples.

  • Tamir Tuller‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.


Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions.

  • Jialei Ji‎ et al.
  • Biomolecules‎
  • 2022‎

The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant-pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.


The evolution and biological correlates of hand preferences in anthropoid primates.

  • Kai R Caspar‎ et al.
  • eLife‎
  • 2022‎

The evolution of human right-handedness has been intensively debated for decades. Manual lateralization patterns in non-human primates have the potential to elucidate evolutionary determinants of human handedness, but restricted species samples and inconsistent methodologies have so far limited comparative phylogenetic studies. By combining original data with published literature reports, we assembled data on hand preferences for standardized object manipulation in 1786 individuals from 38 species of anthropoid primates, including monkeys, apes, and humans. Based on that, we employ quantitative phylogenetic methods to test prevalent hypotheses on the roles of ecology, brain size, and tool use in primate handedness evolution. We confirm that human right-handedness represents an unparalleled extreme among anthropoids and found taxa displaying population-level handedness to be rare. Species-level direction of manual lateralization was largely uniform among non-human primates and did not strongly correlate with any of the selected biological predictors, nor with phylogeny. In contrast, we recovered highly variable patterns of hand preference strength, which show signatures of both ecology and phylogeny. In particular, terrestrial primates tend to display weaker hand preferences than arboreal species. These results challenge popular ideas on primate handedness evolution, including the postural origins hypothesis. Furthermore, they point to a potential adaptive benefit of disparate lateralization strength in primates, a measure of hand preference that has often been overlooked in the past. Finally, our data show that human lateralization patterns do not align with trends found among other anthropoids, suggesting that unique selective pressures gave rise to the unusual hand preferences of our species.


Epidemiology, evolution, and biological characteristics of H6 avian influenza viruses in China.

  • Xiaohao Xu‎ et al.
  • Emerging microbes & infections‎
  • 2023‎

H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in birds globally. To investigate the current situation and characteristics of H6 AIVs circulating in China, we analysed the epidemiology, genetic evolution and pathogenic features of this subtype. During 2000-2021, H6 subtype AIVs spread widely through Southern China and presented high host diversity. On analysing 171 H6 viruses isolated during 2009-2021, dynamic reassortments were observed among H6 and other co-circulating AIV subtypes, and these generated a total of 16 different genotypes. A few H6N6 strains possessed L226 and S228 mutations of hemagglutinin (H3 numbering), which may enhance the affinity of H6 viruses to human receptors. H6N6 viruses also exhibited divergent pathogenicity and growth profiles in vivo and in vitro. Some of the H6N6 viruses could infect mice without mammalian adaptation, and even caused death in this species. Therefore, our study demonstrated that the H6 AIVs posed a potential threat to human health and highlighted the urgent need for continued surveillance and evaluation of the H6 influenza viruses circulating in the field.


Once upon Multivariate Analyses: When They Tell Several Stories about Biological Evolution.

  • Sabrina Renaud‎ et al.
  • PloS one‎
  • 2015‎

Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing 'better' than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.


Gene flow and biological conflict systems in the origin and evolution of eukaryotes.

  • L Aravind‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2012‎

The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.


Redox chemistry of molybdenum in natural waters and its involvement in biological evolution.

  • Deli Wang‎
  • Frontiers in microbiology‎
  • 2012‎

The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth's history.


Biological Characterization and Evolution of Bacteriophage T7-△holin During the Serial Passage Process.

  • Hai Xu‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.


Teaching nature of science in introductory biology: Impacts on students' acceptance of biological evolution.

  • Jeremy D Sloane‎ et al.
  • PloS one‎
  • 2023‎

The present study investigates the impact of explicit, reflective Nature of Science instruction on students' evolution acceptance, understanding of evolution as a theory, and understanding of Nature of Science in an introductory biology course. Results revealed similar improvement in evolution acceptance in both the treatment and control groups, but also that Nature of Science instruction had disproportionately large impacts on evolution acceptance for women and individuals who already had high acceptance. We also found evidence of relationships between understanding and acceptance of evolution and Nature of Science understanding, particularly the creativity aspect of Nature of Science. Together, these results suggest that targeted Nature of Science instruction can have differential impacts on students with particular characteristics, such as women and individuals with high acceptance, but also point to the need to consider additional interventions that can reach men and individuals with low acceptance.


Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations.

  • Aurelie Tomczak‎ et al.
  • Scientific reports‎
  • 2018‎

Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this analysis - the ontology and the annotations - evolve rapidly. We used gene signatures derived from 104 disease analyses to systematically evaluate how enrichment analysis results were affected by evolution of the GO over a decade. We found low consistency between enrichment analyses results obtained with early and more recent GO versions. Furthermore, there continues to be a strong annotation bias in the GO annotations where 58% of the annotations are for 16% of the human genes. Our analysis suggests that GO evolution may have affected the interpretation and possibly reproducibility of experiments over time. Hence, researchers must exercise caution when interpreting GO enrichment analyses and should reexamine previous analyses with the most recent GO version.


Genetic Diversity and Evolution of the Biological Features of the Pandemic SARS-CoV-2.

  • A A Nikonova‎ et al.
  • Acta naturae‎
  • 2021‎

The new coronavirus infection (COVID-19) represents a challenge for global health. Since the outbreak began, the number of confirmed cases has exceeded 117 million, with more than 2.6 million deaths worldwide. With public health measures aimed at containing the spread of the disease, several countries have faced a crisis in the availability of intensive care units. Currently, a large-scale effort is underway to identify the nucleotide sequences of the SARS-CoV-2 coronavirus that is an etiological agent of COVID-19. Global sequencing of thousands of viral genomes has revealed many common genetic variants, which enables the monitoring of the evolution of SARS-CoV-2 and the tracking of its spread over time. Understanding the current evolution of SARS-CoV-2 is necessary not only for a retrospective analysis of the new coronavirus infection spread, but also for the development of approaches to the therapy and prophylaxis of COVID-19. In this review, we have focused on the general characteristics of SARS-CoV-2 and COVID-19. Also, we have analyzed available publications on the genetic diversity of the virus and the relationship between the diversity and the biological properties of SARS-CoV-2, such as virulence and contagiousness.


Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents.

  • Francisca A Zepeda-Paulo‎ et al.
  • Evolutionary applications‎
  • 2013‎

The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: