Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24,037 papers

Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions.

  • Tobias Kürschner‎ et al.
  • Ecology and evolution‎
  • 2021‎

Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.


In Vitro Evaluation of the Biological Availability of Hyaluronic Acid Polyethylene Glycols-Cross-Linked Hydrogels to Bovine Testes Hyaluronidase.

  • N Zerbinati‎ et al.
  • BioMed research international‎
  • 2019‎

During last years, hyaluronic acid- (HA-) based dermal fillers have grown rapidly and continuously, as reported by the American Society of Aesthetic Plastic Surgery (ASAPS). In fact, HA fillers are considered the gold standard technique for soft tissue augmentation, deep skin hydration, and facial recontouring, playing a key role as an alternative to plastic surgery. HA fillers are less invasive, more biocompatible, and safer and with a more natural and immediate result if compared to plastic surgery. Hence, the safety of HA-based dermal fillers plays a crucial role, mostly in terms of biocompatibility and adjustability in case of unpleasant results and side effects such as, tyndall effect, edema, or granulomas. Hyaluronidase is a naturally occurring enzyme, present in the human body, and can degrade HA fillers avoiding more severe complications. In this article, we analyzed the bioavailability of hyaluronidase degradation of five fillers of Neauvia® hydrogels line (MatexLab SA, Lugano, CH), composed of pure hyaluronic acid and based on PEGDE cross-linking (polyethylene glycol) technology that guarantees a higher biocompatibility and an optimal biointegration and rheological characteristics. The performed in vitro testing is based on the colorimetric determination of the N-acetyl-D-glucosamine (NAG) present in solution after incubation with hyaluronidase, determined at different time points in order to assess the kinetic of each product degradation (1h, 3h, 6h, 24h, 48h, 72h, 120h, and 168h). The aim of this study was to assess, in vitro, how the difference in HA content and PEGDE concentration of the analyzed fillers can influence the product biocompatibility, intended as product enzymatic clearance and duration in time. The results demonstrated that the method was reproducible and easy to perform and that all the analyzed fillers are naturally immediately available for hyaluronidase-mediated degradation.


Availability of Ferritin-Bound Iron to Enterobacteriaceae.

  • Clemens M Gehrer‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.


Adiponectin Controls Nutrient Availability in Hypothalamic Astrocytes.

  • Nuri Song‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


PARP-1 regulates DNA repair factor availability.

  • Matthew J Schiewer‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.


Vitamin B2 enables regulation of fasting glucose availability.

  • Peter M Masschelin‎ et al.
  • eLife‎
  • 2023‎

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Regulation of glutamate receptor subunit availability by microRNAs.

  • Julie Karr‎ et al.
  • The Journal of cell biology‎
  • 2009‎

The efficacy of synaptic transmission depends, to a large extent, on postsynaptic receptor abundance. The molecular mechanisms controlling receptor abundance are poorly understood. We tested whether abundance of postsynaptic glutamate receptors (GluRs) in Drosophila neuromuscular junctions is controlled by microRNAs, and provide evidence that it is. We show here that postsynaptic knockdown of dicer-1, the endoribonuclease necessary for microRNA synthesis, leads to large increases in postsynaptic GluR subunit messenger RNA and protein. Specifically, we measured increases in GluRIIA and GluRIIB but not GluRIIC. Further, knockout of MiR-284, a microRNA predicted to bind to GluRIIA and GluRIIB but not GluRIIC, increases expression of GluRIIA and GluRIIB but not GluRIIC proportional to the number of predicted binding sites in each transcript. Most of the de-repressed GluR protein, however, does not appear to be incorporated into functional receptors, and only minor changes in synaptic strength are observed, which suggests that microRNAs primarily regulate Drosophila receptor subunit composition rather than overall receptor abundance or synaptic strength.


Increased glucose availability sensitizes pancreatic cancer to chemotherapy.

  • Ali Vaziri-Gohar‎ et al.
  • Nature communications‎
  • 2023‎

Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.


Cardiac Rehabilitation Availability and Density around the Globe.

  • Karam Turk-Adawi‎ et al.
  • EClinicalMedicine‎
  • 2019‎

Despite the epidemic of cardiovascular disease and the benefits of cardiac rehabilitation (CR), availability is known to be insufficient, although this is not quantified. This study ascertained CR availability, volumes and its drivers, and density.


Inducible pesticide tolerance in Daphnia pulex influenced by resource availability.

  • Vanessa P Wuerthner‎ et al.
  • Ecology and evolution‎
  • 2019‎

Pesticides are a ubiquitous contaminant in aquatic ecosystems. Despite the relative sensitivity of aquatic species to pesticides, growing evidence suggests that populations can respond to pesticides by evolving higher baseline tolerance or inducing a higher tolerance via phenotypic plasticity. While both mechanisms can allow organisms to persist when faced with pesticides, resource allocation theory suggests that tolerance may be related to resource acquisition by the organism. Using Daphnia pulex, we investigated how algal resource availability influenced the baseline and inducible tolerance of D. pulex to a carbamate insecticide, carbaryl. Individuals reared in high resource environments had a higher baseline carbaryl tolerance compared to those reared in low resource environments. However, D. pulex from low resource treatments exposed to sublethal concentrations of carbaryl early in development induced increased tolerance to a lethal concentration of carbaryl later in life. Only individuals reared in the low resource environment induced carbaryl tolerance. Collectively, this highlights the importance of considering resource availability in our understanding of pesticide tolerance.


Regulation of social hierarchy learning by serotonin transporter availability.

  • Remi Janet‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2022‎

Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.


TFEB controls retromer expression in response to nutrient availability.

  • Rachel Curnock‎ et al.
  • The Journal of cell biology‎
  • 2019‎

Endosomal recycling maintains the cell surface abundance of nutrient transporters for nutrient uptake, but how the cell integrates nutrient availability with recycling is less well understood. Here, in studying the recycling of human glutamine transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), SNAT1 (SLC38A1), and SNAT2 (SLC38A2), we establish that following amino acid restriction, the adaptive delivery of SNAT2 to the cell surface relies on retromer, a master conductor of endosomal recycling. Upon complete amino acid starvation or selective glutamine depletion, we establish that retromer expression is upregulated by transcription factor EB (TFEB) and other members of the MiTF/TFE family of transcription factors through association with CLEAR elements in the promoters of the retromer genes VPS35 and VPS26A TFEB regulation of retromer expression therefore supports adaptive nutrient acquisition through endosomal recycling.


Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei.

  • Alexander C Haindrich‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.


MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability.

  • Francesca Mancini‎ et al.
  • Molecular cancer‎
  • 2017‎

Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions.


Carbohydrate availability regulates virulence gene expression in Streptococcus suis.

  • M Laura Ferrando‎ et al.
  • PloS one‎
  • 2014‎

Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition.


Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution.

  • Pakavarin Louphrasitthiphol‎ et al.
  • Molecular cell‎
  • 2020‎

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Manipulating virulence factor availability can have complex consequences for infections.

  • Michael Weigert‎ et al.
  • Evolutionary applications‎
  • 2017‎

Given the rise of bacterial resistance against antibiotics, we urgently need alternative strategies to fight infections. Some propose we should disarm rather than kill bacteria, through targeted disruption of their virulence factors. It is assumed that this approach (i) induces weak selection for resistance because it should only minimally impact bacterial fitness, and (ii) is specific, only interfering with the virulence factor in question. Given that pathogenicity emerges from complex interactions between pathogens, hosts and their environment, such assumptions may be unrealistic. To address this issue in a test case, we conducted experiments with the opportunistic human pathogen Pseudomonas aeruginosa, where we manipulated the availability of a virulence factor, the iron-scavenging pyoverdine, within the insect host Galleria mellonella. We observed that pyoverdine availability was not stringently predictive of virulence and affected bacterial fitness in nonlinear ways. We show that this complexity could partly arise because pyoverdine availability affects host responses and alters the expression of regulatorily linked virulence factors. Our results reveal that virulence factor manipulation feeds back on pathogen and host behaviour, which in turn affects virulence. Our findings highlight that realizing effective and evolutionarily robust antivirulence therapies will ultimately require deeper engagement with the intrinsic complexity of host-pathogen systems.


Unraveling the genetic complexity underlying sorghum response to water availability.

  • Nguyen Phuong‎ et al.
  • PloS one‎
  • 2019‎

Understanding the adaptation mechanisms of sorghum to drought and the underlying genetic architecture may help to improve its production in a wide range of environments. By crossing a high yielding parent (HYP) and a drought tolerant parent (DTP), we obtained 140 recombinant inbred lines (RILs), which were genotyped with 120 DArT and SSR markers covering 14 linkage groups (LGs). A subset of 100 RILs was evaluated three times in control and drought treatments to genetically dissect their response to water availability. Plants with early heading date (HD) in the drought treatment maintained yield (YLD) level by reducing seed number SN and increasing hundred seed weight (HSW). In contrast, early HD in the control treatment increased SN, HSW and YLD. In total, 133 significant QTL associated with the measured traits were detected in ten hotspot regions. Antagonistic, pleiotropic effects of a QTL cluster mapped on LG-6 may explain the observed trade-offs between SN and HSW: Alleles from DTP reduced SN and the alleles from HYP increased HSW under drought stress, but not in the control treatment. Our results illustrate the importance of considering genetic and environmental factors in QTL mapping to better understand plant responses to drought and to improve breeding programs.


Assembly, Assessment, and Availability of De novo Generated Eukaryotic Transcriptomes.

  • Joanna Moreton‎ et al.
  • Frontiers in genetics‎
  • 2015‎

De novo assembly of a complete transcriptome without the need for a guiding reference genome is attractive, particularly where the cost and complexity of generating a eukaryote genome is prohibitive. The transcriptome should not however be seen as just a quick and cheap alternative to building a complete genome. Transcriptomics allows the understanding and comparison of spatial and temporal samples within an organism, and allows surveying of multiple individuals or closely related species. De novo assembly in theory allows the building of a complete transcriptome without any prior knowledge of the genome. It also allows the discovery of alternate splice forms of coding RNAs and also non-coding RNAs, which are often missed by proteomic approaches, or are incompletely annotated in genome studies. The limitations of the method are that the generation of a truly complete assembly is unlikely, and so we require some methods for the assessment of the quality and appropriateness of a generated transcriptome. Whilst no single consensus pipeline or tool is agreed as optimal, various algorithms, and easy to use software do exist making transcriptome generation a more common approach. With this expansion of data, questions still exist relating to how do we make these datasets fully discoverable, comparable and most useful to understand complex biological systems?


HLH-11 modulates lipid metabolism in response to nutrient availability.

  • Yi Li‎ et al.
  • Nature communications‎
  • 2020‎

The ability of organisms to sense nutrient availability and tailor their metabolic states to withstand nutrient deficiency is critical for survival. To identify previously unknown regulators that couple nutrient deficiency to body fat utilization, we performed a cherry-picked RNAi screen in C. elegans and found that the transcription factor HLH-11 regulates lipid metabolism in response to food availability. In well-fed worms, HLH-11 suppresses transcription of lipid catabolism genes. Upon fasting, the HLH-11 protein level is reduced through lysosome- and proteasome-mediated degradation, thus alleviating the inhibitory effect of HLH-11, activating the transcription of lipid catabolism genes, and utilizing fat. Additionally, lipid profiling revealed that reduction in the HLH-11 protein level remodels the lipid landscape in C. elegans. Moreover, TFAP4, the mammalian homolog of HLH-11, plays an evolutionarily conserved role in regulating lipid metabolism in response to starvation. Thus, TFAP4 may represent a potential therapeutic target for lipid storage disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: