Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 130,728 papers

Personalized biochemistry and biophysics.

  • Brett M Kroncke‎ et al.
  • Biochemistry‎
  • 2015‎

Whole human genome sequencing of individuals is becoming rapid and inexpensive, enabling new strategies for using personal genome information to help diagnose, treat, and even prevent human disorders for which genetic variations are causative or are known to be risk factors. Many of the exploding number of newly discovered genetic variations alter the structure, function, dynamics, stability, and/or interactions of specific proteins and RNA molecules. Accordingly, there are a host of opportunities for biochemists and biophysicists to participate in (1) developing tools to allow accurate and sometimes medically actionable assessment of the potential pathogenicity of individual variations and (2) establishing the mechanistic linkage between pathogenic variations and their physiological consequences, providing a rational basis for treatment or preventive care. In this review, we provide an overview of these opportunities and their associated challenges in light of the current status of genomic science and personalized medicine, the latter often termed precision medicine.


Biochemistry of airway mucus secretions.

  • T F Boat‎ et al.
  • Federation proceedings‎
  • 1980‎

Tracheobronchial secretions are a complex mixture of secretory fluids derived from sources within the lung. Important constituents include the mucous glycoproteins, other secretory proteins, serum proteins, lipids, salts; water makes up 95% of mucus by weight. These secretions form two phases at the epithelial surface: a mucous gel and an aqueous layer (periciliary fluid). Polymerization and aggregation of mucous glycoproteins create the gel matrix. Other macromolecules such as lysozyme, albumin, and immunoglobulin A also may participate in the process of gelation. Intermolecular forces contributing to gelation include disulfide bonding, sugar-sugar interactions between adjacent glycoproteins, and ionic interactions between the glycoprotein anionic groups (sialic acid carboxyl and sulfate) and cationic components in the secretions. Respiratory tract mucous glycoproteins are large, extended molecules, which have a high carbohydrate content. They are polydisperse, with variation occurring largely in the content of sulfated sugars and sialic acid. Factors such as cell of origin, chronic lung disease, and pharmacologic effects influence the density of these anionic (acidic) groups. Variation in acidic properties may influence the physical and virus-binding properties of mucus. Little information is available concerning the biosynthetic mechanisms in airway epithelium through which these variations are effected.


Biochemistry that times the day.

  • Martin Egli‎ et al.
  • Biochemistry‎
  • 2015‎

No abstract available


Carotenoids: biochemistry, pharmacology and treatment.

  • Alireza Milani‎ et al.
  • British journal of pharmacology‎
  • 2017‎

Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action.


Concept mapping enhances learning of biochemistry.

  • Krishna M Surapaneni‎ et al.
  • Medical education online‎
  • 2013‎

Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content.


Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration.

  • Luca Mignani‎ et al.
  • Brain sciences‎
  • 2021‎

Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.


Transaldolase: from biochemistry to human disease.

  • Anne K Samland‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2009‎

The role of the enzyme transaldolase (TAL) in central metabolism, its biochemical properties, structure, and role in human disease is reviewed. The nearly ubiquitous enzyme transaldolase is a part of the pentose phosphate pathway and transfers a dihydroxyacetone group from donor compounds (fructose 6-phosphate or sedoheptulose 7-phosphate) to aldehyde acceptor compounds. The phylogeny of transaldolases shows that five subfamilies can be distinguished, three of them with proven TAL enzyme activity, one with unclear function, and the fifth subfamily comprises transaldolase-related enzymes, the recently discovered fructose 6-phosphate aldolases. The three-dimensional structure of a bacterial (Escherichia coli TAL B) and the human enzyme (TALDO1) has been solved. Based on the 3D-structure and mutagenesis studies, the reaction mechanism was deduced. The cofactor-less enzyme proceeds with a Schiff base intermediate (bound dihydroxyacetone). While a transaldolase deficiency is well tolerated in many microorganisms, it leads to severe symptoms in homozygous TAL-deficient human patients. The involvement of TAL in oxidative stress and apoptosis, in multiple sclerosis, and in cancer is discussed.


Biochemistry of human tear film: A review.

  • Simin Masoudi‎
  • Experimental eye research‎
  • 2022‎

The precorneal tear film is a complex mixture of proteins, lipids, metabolites, and electrolytes with different structures and functionalities. Sustainable production of each tear component is vital to the health of the ocular surface. Abnormalities in the tear film components may reflect alterations in the health of the ocular surface or the presence of systemic disease. Despite all the research performed over the recent two decades, our knowledge of the tear film molecular profile in healthy individuals is scant and incomplete. The reported studies have mostly investigated small sample size populations in incomparably varying age groups and ethnic backgrounds. The methods used for detection and measurement of various tear compounds have been widely disparate making the comparison of results difficult. All these in addition to certain environmental factors are known to influence the resultant data. Therefore, studying normal human tear profile would require involvement of a wide range of sample population, factoring in age, race, gender, geographical and environmental parameters. Establishing a normal human tear profile may open the path to fast and simple diagnosis of disease, which in turn may lead to improved prognosis of treatments via early detection of disease.


The inorganic biochemistry of photosynthetic water oxidation.

  • G C Dismukes‎ et al.
  • Biochemical Society transactions‎
  • 1994‎

No abstract available


Quantum chemistry reveals thermodynamic principles of redox biochemistry.

  • Adrian Jinich‎ et al.
  • PLoS computational biology‎
  • 2018‎

Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values.


Genetics and Biochemistry of Zero-Tannin Lentils.

  • Mahla Mirali‎ et al.
  • PloS one‎
  • 2016‎

The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in a phenotype characterized by green stems, white flowers, and thin, transparent, or translucent seed coats. Genes that result in zero-tannin characteristics are useful for studies of seed coat pigmentation and biochemical characters because they have altered pigmentation. In this study, one of the major groups of plant pigments, phenolic compounds, was compared among zero-tannin and normal phenotypes and genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, flavan-3-ols, and proanthocyanidins are only detected in normal lentil phenotypes and not in zero-tannin types. The molecular analysis showed that the tan gene encodes a bHLH transcription factor, homologous to the A gene in pea. The results of this study suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the biochemical pathway of phenolic compounds starting from flavonoid-3',5'-hydroxylase (F3'5'H) and dihydroflavonol reductase (DFR).


Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries.

  • Uyen T T Nguyen‎ et al.
  • Nature methods‎
  • 2014‎

Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone post-translational modification (PTM) signatures remains a daunting task in the epigenetics field. We introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semisynthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries, once they have been treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome, is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how preexisting PTMs, alone or synergistically, affect further PTM deposition via cross-talk mechanisms. We anticipate that the high throughput and sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin.


Bulk phase biochemistry of PIF1 and RecQ4 family helicases.

  • Prasangi Rajapaksha‎ et al.
  • Methods in enzymology‎
  • 2022‎

DNA helicases are involved in nearly all facets of genome integrity, and in humans, mutations in helicase-encoding genes are often linked to diseases of genomic instability. Two highly studied and evolutionarily conserved helicase families are the PIF1 and RecQ helicases. Enzymes in these families have known roles in DNA replication, recombination, and repair, as well as telomere maintenance, DNA recombination, and transcription. Although genetics, structural biology, and a variety of other techniques have been used to study these helicases, ensemble analyses of their basic biochemical activities such as DNA binding, ATP hydrolysis, and DNA unwinding have made significant contributions to our understanding of their physiological roles. Here, we present general methods to generate recombinant proteins from both helicase families, as well as standard biochemical assays to investigate their activities on DNA.


Undergraduate Performance in Solving Ill-Defined Biochemistry Problems.

  • Cheryl A Sensibaugh‎ et al.
  • CBE life sciences education‎
  • 2017‎

With growing interest in promoting skills related to the scientific process, we studied performance in solving ill-defined problems demonstrated by graduating biochemistry majors at a public, minority-serving university. As adoption of techniques for facilitating the attainment of higher-order learning objectives broadens, so too does the need to appropriately measure and understand student performance. We extended previous validation of the Individual Problem Solving Assessment (IPSA) and administered multiple versions of the IPSA across two semesters of biochemistry courses. A final version was taken by majors just before program exit, and student responses on that version were analyzed both quantitatively and qualitatively. This mixed-methods study quantifies student performance in scientific problem solving, while probing the qualitative nature of unsatisfactory solutions. Of the five domains measured by the IPSA, we found that average graduates were only successful in two areas: evaluating given experimental data to state results and reflecting on performance after the solution to the problem was provided. The primary difficulties in each domain were quite different. The most widespread challenge for students was to design an investigation that rationally aligned with a given hypothesis. We also extend the findings into pedagogical recommendations.


Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics.

  • Tiffany Porta Siegel‎ et al.
  • Angewandte Chemie (International ed. in English)‎
  • 2019‎

Lipidomics is a rapidly growing field with numerous examples showing the importance of lipid molecules throughout biology. It has also shed light onto the vast and complex functions performed by many lipids that possess an immense diversity in molecular structures. Mass spectrometry (MS) is the tool of choice for analyzing lipids and has been the key catalyst driving the field forward. However, MS does not yet permit true molecular lipidomics wherein the identification and quantification of lipids having defined molecular structures can be routinely achieved. Here we describe recent advances in MS-based lipidomics that allow access to higher levels of molecular information in lipidomics experiments. These advances will form a key piece of the puzzle as the field moves towards systems characterization of lipids at the molecular level.


Isobutanol production freed from biological limits using synthetic biochemistry.

  • Saken Sherkhanov‎ et al.
  • Nature communications‎
  • 2020‎

Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L-1 h-1, a titer of 275 g L-1 and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production.


Universal buffers for use in biochemistry and biophysical experiments.

  • Dewey Brooke‎ et al.
  • AIMS biophysics‎
  • 2015‎

The use of buffers that mimic biological solutions is a foundation of biochemical and biophysical studies. However, buffering agents have both specific and nonspecific interactions with proteins. Buffer molecules can induce changes in conformational equilibria, dynamic behavior, and catalytic properties merely by their presence in solution. This effect is of concern because many of the standard experiments used to investigate protein structure and function involve changing solution conditions such as pH and/or temperature. In experiments in which pH is varied, it is common practice to switch buffering agents so that the pH is within the working range of the weak acid and conjugate base. If multiple buffers are used, it is not always possible to decouple buffer induced change from pH or temperature induced change. We have developed a series of mixed biological buffers for protein analysis that can be used across a broad pH range, are compatible with biologically relevant metal ions, and avoid complications that may arise from changing the small molecule composition of buffers when pH is used as an experimental variable.


Brain biochemistry and personality: a magnetic resonance spectroscopy study.

  • Sephira G Ryman‎ et al.
  • PloS one‎
  • 2011‎

To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.


Understanding biochemistry: basic aspects of statistics for life sciences.

  • Donald Reid‎
  • Essays in biochemistry‎
  • 2023‎

If the biological world is one thing it is variable. As scientists we seek to measure, quantify and explain the causes of this variation. The approach we take to this is remarkably similar whether our research is exploring global temperature, blood pressure, cancer incidence or enzyme kinetics. This approach involves defining clear research questions and applying statistical methods to answer them robustly. This article will introduce a practical example that will be used throughout, specifically whether genetic variation can explain variation in coffee consumption. We assume little experience with statistics and walk through the statistical approach that biologists can use, firstly by describing our data with summary statistics and then by using statistical tests to help arrive at answers to our research question. A General Linear Model (GLM) approach will be used as this is what many common statistical tests are. We explore how to visualise and report results, while checking the assumptions of our analysis. The better we can understand and apply statistics to biological problems, the better we can communicate results and future research to others. The popular statistical programming language R will be used throughout.


Genomic approaches for interrogating the biochemistry of medicinal plant species.

  • Elsa Góngora-Castillo‎ et al.
  • Methods in enzymology‎
  • 2012‎

Development of next-generation sequencing, coupled with the advancement of computational methods, has allowed researchers to access the transcriptomes of recalcitrant genomes such as those of medicinal plant species. Through the sequencing of even a few cDNA libraries, a broad representation of the transcriptome of any medicinal plant species can be obtained, providing a robust resource for gene discovery and downstream biochemical pathway discovery. When coupled to estimation of expression abundances in specific tissues from a developmental series, biotic stress, abiotic stress, or elicitor challenge, informative coexpression and differential expression estimates on a whole transcriptome level can be obtained to identify candidates for function discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: