Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 723 papers

Convulsant bicuculline modifies CNS muscarinic receptor affinity.

  • Patricia G Schneider‎ et al.
  • BMC neuroscience‎
  • 2006‎

Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP), a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB) to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC), known to antagonize the GABA-A postsynaptic receptor subtype.


Inhibition by levetiracetam of a non-GABAA receptor-associated epileptiform effect of bicuculline in rat hippocampus.

  • D G Margineanu‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. Extracellular recording of field potentials, evoked by commissural stimulation in hippocampal area CA3 of anaesthetized rats, was performed in order to study the mode of action of the novel antiepileptic drug levetiracetam (ucb LO59). 2. The amplitude of orthodromic field population spike (PS2) markedly increased and repetitive population spikes appeared when the recording micropipette contained either bicuculline methiodide (BMI), or the specific GABAA antagonist gabazine (SR-95531). 3. BMI-induced increases in PS2 were reduced in a dose-dependent manner by 1 to 320 mumol kg-1 levetiracetam i.v., with a U-shape dose-response relationship. However, levetiracetam did not reduce the increases in PS2 produced by gabazine. 4. Clonazepam (1 mg kg-1, i.p.), carbamazepine (20 mg kg-1, i.p.) and valproate (200 mg kg-1, i.v.) were ineffective in preventing BMI-induced increases in PS2, while the calcium channel antagonist flunarizine, 50 mumol kg-1, i.p., reduced PS2 increments caused by BMI. The L-type calcium channel blocker nifedipine, 100 mumol kg-1, i.p., was without effect. Similar to levetiracetam, flunarizine did not reduce the increases in PS2 induced by gabazine. 5. These data suggest that the increased excitability of CA3 neurones, caused by BMI administered in situ, involves calcium-dependent processes not associated with blockade of GABAA receptors. The inhibition by levetiracetam of this calcium-dependent effect of BMI might contribute to the antiepileptic effects of the drug.


Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors.

  • Michele Malaguarnera‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Patients with liver cirrhosis may develop minimal hepatic encephalopathy (MHE) with mild cognitive impairment. Hyperammonemia is a main contributor to cognitive impairment in MHE, which is mediated by neuroinflammation. GABAergic neurotransmission is altered in hyperammonemic rats. We hypothesized that, in hyperammonemic rats, (a) enhanced GABAergic tone would contribute to induce neuroinflammation, which would be improved by reducing GABAergic tone by chronic bicuculline treatment; (b) this would improve spatial learning and memory impairment; and (c) modulation of glutamatergic neurotransmission would mediate this cognitive improvement. The aim of this work was to assess the above hypotheses. Bicuculline was administrated intraperitoneally once a day for 4 weeks to control and hyperammonemic rats. The effects of bicuculline on microglia and astrocyte activation, IL-1β content, on membrane expression of AMPA and NMDA glutamate receptors subunits in the hippocampus and on spatial learning and memory as well as anxiety were assessed. Treatment with bicuculline reduces astrocyte activation and IL-1β but not microglia activation in the hippocampus of hyperammonemic rats. Bicuculline reverses the changes in membrane expression of AMPA receptor subunits GluA1 and GluA2 and of the NR2B (but not NR1 and NR2A) subunit of NMDA receptors. Bicuculline improves spatial learning and working memory and decreases anxiety in hyperammonemic rats. In hyperammonemia, enhanced activation of GABAA receptors in the hippocampus contributes to some but not all aspects of neuroinflammation, to altered glutamatergic neurotransmission and to impairment of spatial learning and memory as well as anxiety, all of which are reversed by reducing activation of GABAA receptors with bicuculline.


Effects of (+)-bicuculline, a GABAa receptor antagonist, on auditory steady state response in free-moving rats.

  • Mayako Yamazaki‎ et al.
  • PloS one‎
  • 2020‎

Auditory steady-state responses (ASSRs) are states in which the electrical activity of the brain reacts steadily to repeated auditory stimuli. They are known to be useful for testing the functional integrity of neural circuits in the cortex, as well as for their capacity to generate synchronous activity in both human and animal models. Furthermore, abnormal gamma oscillations on ASSR are typically observed in patients with schizophrenia (SZ). Changes in neural synchrony may reflect aberrations in cortical gamma-aminobutyric acid (GABA) neurotransmission. However, GABA's impact and effects related to ASSR are still unclear. Here, we examined the effect of a GABAa receptor antagonist, (+)-bicuculline, on ASSR in free-moving rats. (+)-Bicuculline (1, 2 and 4 mg/kg, sc) markedly and dose-dependently reduced ASSR signals, consistent with current hypotheses. In particular, (+)-bicuculline significantly reduced event-related spectral perturbations (ERSPs) at 2 and 4 mg/kg between 10 and 30 minutes post-dose. Further, bicuculline (2 and 4 mg/kg) significantly and dose-dependently increased baseline gamma power. Furthermore, the occurrence of convulsions was consistent with the drug's pharmacokinetics. For example, high doses of (+)-bicuculline such as those greater than 880 ng/g in the brain induced convulsion. Additionally, time-dependent changes in ERSP with (+)-bicuculline were observed in accordance with drug concentration. This study partially unraveled the contribution of GABAa receptor signals to the generation of ASSR.


Bicuculline seizure susceptibility and nigral GABAA alpha1 receptor mRNA is altered in adult prenatally morphine-exposed females.

  • C J Schindler‎ et al.
  • Psychoneuroendocrinology‎
  • 2003‎

Prenatal morphine exposure (5-10 mg/kg twice daily on gestation days 11-18) can adversely affect neurological development, including seizure susceptibility. The present study examines the effects of prenatal morphine exposure on seizure susceptibility to the GABA antagonist and convulsant bicuculline and GABA(A) alpha(1) receptor mRNA in the substantia nigra (SN) of female rats. The results demonstrate that prenatally morphine-exposed ovariectomized (OVX) females and OVX females with estradiol benzoate (EB) replacement have an increased latency to seizure onset compared to controls. In addition, prenatal morphine exposure decreases the area covered by grains of GABA(A) alpha(1) receptor mRNA in the anterior SN in both OVX and EB+progesterone (P)-treated groups, and decreases the number of GABA(A) alpha(1) receptor mRNA-labeled cells/field in EB females. Furthermore, prenatally morphine- and saline-exposed EB and EB+P females had decreased GABA(A) alpha(1) receptor mRNA-labeled cells/field in the anterior SN compared to OVX animals of the same prenatal exposure. These results demonstrate that the long term effects of prenatal morphine exposure in female rats is dependent on their hormonal status, and suggest that seizure susceptibility may be altered via neuropharmacological changes in the GABA system in the SN.


The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats.

  • Beatriz Soares-Silva‎ et al.
  • Neuropeptides‎
  • 2022‎

Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.


Effect of intrathecal glycine and related amino acids on the allodynia and hyperalgesic action of strychnine or bicuculline in mice.

  • Eui Sung Lim‎ et al.
  • Korean journal of anesthesiology‎
  • 2010‎

The intrathecal (IT) administration of glycine or GABA(A) receptor antagonist result in a touch evoked allodynia through disinhibition in the spinal cord. Glycine is an inhibitory neurotransmitter that appears to be important in sensory processing in the spinal cord. This study was aimed to evaluate the effect of glycine-related amino acids on antagonizing the effects of IT strychnine (STR) or bicuculline (BIC) when each amino acid was administered in combination with STR or BIC.


Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1-dependent phosphorylation.

  • Luis F H Gladulich‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.


Local administration of bicuculline into the ventrolateral and medial preoptic nuclei modifies sleep and maternal behavior in lactating rats.

  • Luciana Benedetto‎ et al.
  • Physiology & behavior‎
  • 2021‎

The preoptic area (POA) is a brain structure classically involved in a wide variety of animal behavior including sleep and maternal care. In the current study, we evaluate the specific effect of disinhibition of two specific regions of the POA, the medial POA nucleus (mPOA) and the ventrolateral POA area (VLPO) on sleep and maternal behavior in lactating rats. For this purpose, mother rats on postpartum day 1 (PPD1) were implanted for polysomnographic recordings and with bilateral cannulae either in the mPOA or in the VLPO. The rats were tested for sleep and maternal behavior on PPD4-8 after the infusion of the GABA-A antagonist, bicuculline (0, 10 or 30 ng/0.2 µl/side). Infusion of bicuculline into the mPOA augmented retrieving and nest building behaviors and reduced both nursing and milk ejections but had almost no effect on sleep. When bicuculine was microinjected into the VLPO, the rats significantly increase the number of retrievings and mouthings and reduced the nursing time without changes in milk ejections, which was associated with an increase in wakefulness and a reduction in light sleep. Our results show that disinhibition of the mPOA, a key area in the control of maternal behavior, increased active maternal behaviors and reduced nursing without affecting wakefulness or sleep time. In contrast, the enhancement of some active maternal behaviors when the drug was infused into the VLPO, a sleep-promoting area, with a concomitant increase in wakefulness suggests that mother rats devote this additional waking time in the active maternal care of the pups. We hypothesize that maternal behavior changes after bicuculine microinjection into the VLPO are caused by a reduction in the sleep drive, rather than a direct effect on maternal behavior.


Multi-neuronal recordings reveal a differential effect of thapsigargin on bicuculline- or gabazine-induced epileptiform excitability in rat hippocampal neuronal networks.

  • D M Sokal‎ et al.
  • Neuropharmacology‎
  • 2000‎

The present study was performed to investigate the effects of depleting intracellular Ca(2+) stores on bicuculline- or gabazine-induced epileptiform excitability. Studies were performed on monolayer rat hippocampal neuronal networks utilising a system that allowed simultaneous multiple extracellular single-unit recordings of neuronal activity. Hippocampal neuronal networks were prepared from enzymatically dissociated hippocampi from 18-day-old fetal Wistar rats. The cells were cultured in Neurobasal medium with B27 serum-free supplements directly onto the surface of planar multiple microelectrode arrays with a central recording array of 64 (4 x 16) indium-tin thin-film recording electrodes. All cells recorded at 21 days-in-vitro exhibited spontaneous discharge activity with firing rates between 0.3-30.7 Hz. gamma-aminobutyric acid (GABA) produced a concentration-dependent decrease in firing (EC(50)=9.1 microM) which could be blocked by pre-application of bicuculline methobromide (10 microM). Addition of the GABA(A)-receptor antagonists gabazine (10 microM) or bicuculline (10 microM) resulted in the rapid generation of synchronised bursting within all the cells recorded. Bicuculline exhibited heterogeneity of action on firing rate, whereas gabazine always increased firing. Pre-incubation with thapsigargin, which depletes intracellular calcium stores, resulted in a decrease in the amount of neuronal excitation produced by bicuculline, but not by gabazine, suggesting that bicuculline-induced neuronal excitation requires release of Ca(2+) from intracellular stores.


Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABAA receptor stimulation.

  • Debapriya Garabadu‎ et al.
  • Pharmaceutical biology‎
  • 2017‎

Metformin attenuates type-2 diabetes mellitus (T2DM)-induced hepatic dysfunction and altered PI3K/Akt/GLUT-4 signalling in experimental studies. However, its effect on bicuculline-sensitive gamma amino butyric acid (GABA)-A receptor (GABAAR)-mediated calcium-dependent PI3K/Akt/GLUT-4 signalling in liver challenged to T2DM has not been established.


Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model.

  • Wei-Pang Chang‎ et al.
  • Experimental neurology‎
  • 2015‎

Clinical studies have shown that cathodal transcranial direct-current stimulation (tDCS) application can produce long-term suppressive effects on drug-resistant seizures. Whether this long-term effect produced by cathodal tDCS can counterbalance the enhancement of synaptic transmission during seizures requires further investigation. Our hypothesis was that the long-term effects of DCS on seizure suppression by the application of cathodal DCS occur through a long-term depression (LTD)-like mechanism. We used a thalamocingulate brain slice preparation combined with a multielectrode array and patch recording to investigate the underlying mechanism of the suppressive effect of DCS on anterior cingulate cortex (ACC) seizures. Patch-clamp recordings showed that cathodal DCS significantly decreased spontaneous excitatory postsynaptic currents (EPSCs) and epileptic EPSCs caused by the 4-aminopyridine. Fifteen minutes of DCS application reliably induced LTD, and the synaptic activation frequency was an important factor in LTD formation. The application of DCS alone without continuous synaptic activation did not induce LTD. Direct-current stimulation-induced LTD appeared to be N-methyl-d-aspartate (NMDA)-dependent, in which the application of the NMDA receptor antagonist D-1-2-amino-5-phosphonopentanoic acid (APV) abolished DCS-induced LTD, and the immediate effect remained. Direct-current stimulation-induced LTD and the long-term effects of DCS on seizure-like activities were also abolished by okadaic acid, a protein phosphatase 1 inhibitor. The long-term effects of DCS on seizures were not influenced by the depotentiation blocker FK-506. Therefore, we conclude that the long-term effects of DCS on seizure-like activities in brain slice occur through an LTD-like mechanism.


Exercise combined with low-level GABAA receptor inhibition up-regulates the expression of neurotrophins in the motor cortex.

  • Kazuma Takahashi‎ et al.
  • Neuroscience letters‎
  • 2017‎

Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the central nervous system. Aerobic exercise is known to increase the expression of BDNF in the cerebral cortex. Several animal studies have evaluated the tonic inhibition of GABAergic synapses to enhance hippocampal plasticity as well as learning and memory, whereas the effects of GABAergic inhibition on plasticity in the cerebral cortex related to motor learning are not well characterized. The objective of the present study was to examine the interactive effect of low-level GABAA receptor inhibition and exercise on the expression of neurotrophins including BDNF in the murine motor cortex. ICR mice were randomly distributed among 4 groups based on two factors of GABAA receptor inhibition and exercise, i.e. control group, an exercise group, a bicuculline group, and an exercise plus bicuculline group. We administered GABAA receptor antagonist, bicuculline intraperitoneally to the mice (bicuculline and exercise plus bicuculline group) at a non-epileptic dose of 0.25mg/kg, whereas the mice (exercise and exercise plus bicuculline group) were exercised on a treadmill for 1h every day. After two week intervention, the expression of mRNA and protein abundance of neurotrophins in the motor cortex was assayed using Real time PCR and ELISA. BDNF gene expression was significantly increased by approximately 3-fold in the bicuculline group relative to the control, exercise, and bicuculline plus exercise groups. Protein abundance of BDNF expression was significantly increased by approximately 3-fold in the bicuculline plus exercise group relative to other groups. Therefore, the present study revealed that combined GABAA receptor inhibition and moderate aerobic exercise up-regulated BDNF protein expression in the motor cortex without producing side effects on motor or cognitive functions. Alterations in BDNF expression could positively contribute to plasticity by regulating the balance between EPSPs and IPSPs in the motor cortex and thus providing a more appropriate neuronal condition for motor learning and recovery.


Prelimbic of Medial Prefrontal Cortex GABA Modulation through Testosterone on Spatial Learning and Memory.

  • Azadeh Gholaminejad‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2019‎

Prefrontal cortex (PFC) is involved in multiple functions including attentional processes, spatial orientation, short-term memory, and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of testosterone (androgenic receptor agonist) and bicuculline (GABAA receptor antagonist) on spatial learning and memory performance in the prelimbic (PL) of male Wistar rats. Cannulae were bilaterally implanted into the PL region of PFC and drugs were daily microinjected for two minutes in each side. There are 4 experiments. In the first experiment, three sham groups were operated (solvent of testosterone, bicuculline, testosterone plus bicuculline). In the second experiment, different doses of testosterone (40, 80 μg /0.5 μL DMSO/each side) were injected into the PL before each session. In the third experiment, intra PL injections of bicuculline (2, 4 μg/0.5 μL DMSO/each side) were given before every session. In the last experiment, testosterone (80μg/0.5 μL DMSO/each side) along with bicuculline (2 μg/0.5 μL DMSO/each side) was injected into the PL. The results showed there is no difference between control group and sham operated group. Testosterone 80 μg and bicuculline 2 μg, each given separately, and also in combination increased escape latency to find the platform compared to the sham operated and cause to impaired spatial learning and memory. It is shown that intra PL microinjection of bicuculline after testosterone treatment could not rescue the spatial learning and memory impaired induced by testosterone.


5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain.

  • S Pathirathna‎ et al.
  • Pain‎
  • 2005‎

5alpha-reduced neuroactive steroids with selective modulatory action in vitro on T or combined modulatory action on T and GABA(A) currents present in peripheral sensory neurons have been shown to induce potent peripheral analgesia in vivo in intact animals. Although the role of T and GABA(A) currents in pathophysiology of neuropathic pain (NPP) is not established, it appears that blockade of T currents and/or potentiation of GABA(A) currents could be beneficial in the management of NPP. To study the potential usefulness of 5alpha-reduced neuroactive steroids in alleviating NPP, we selected two newly synthesized steroids-ECN and CDNC24-with a selective blocking effect on T currents and a selective potentiating effect on GABA(A) currents, respectively, and commercial analogs-alphaxalone and 3alpha5alphaP-with the effects on both ion channels. We used a sciatic nerve ligation model to induce thermal and mechanical hyperalgesia in adult rats and tested peripheral thermal and mechanical nociception following local injection of neuroactive steroids into the peripheral receptive fields of a ligated hind paw. We found that 5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in NPP rats. ECN and CDNC24 were more selective in alleviating thermal nociception in NPP than in sham animals when compared to 3alpha5alphaP and alphaxalone although the anti-nociceptive effect induced by 3alpha5alphaP and alphaxalone was more profound. CDNC24 was most selective since it had very minimal anti-nociceptive effect in sham animals but a very profound anti-nociceptive effect in NPP animals suggesting that, under pathological conditions, peripheral GABA(A) receptors might be an attractive therapeutic target.


Lateral hypothalamic area mediated the protective effects of microinjection of glutamate into interpositus nucleus on gastric ischemia-reperfusion injury in rats.

  • Sheng-Ping Zhu‎ et al.
  • Neuroscience letters‎
  • 2012‎

We investigated the protective effects of chemical stimulation of cerebellar interpositus nucleus (IN) on gastric ischemia-reperfusion injury (GI-RI) and its possible regulatory mechanisms in rats. Gastric mucosal damage index (GMDI) indicated the severity of gastric mucosal injuries. Transferase dUTP nick end labeling (TUNEL) staining and proliferating cell nuclear antigen (PCNA) were performed to assess gastric mucosal cell apoptosis and proliferation. Microinjection of glutamate into IN markedly attenuated GI-RI. Either chemical lesion of IN or electrical ablation of the decussation of superior cerebellar peduncle (DSCP) obviously aggravated GI-RI. The protective effects of IN were reversed with the pretreatments of microinjection of 3-mercaptopropionic acid into IN or Bicuculline into lateral hypothalamic area (LHA), individually. The discharge frequency and intensity of greater splanchnic nerve (GSN) decreased and gastric mucosal blood flow increased after chemical stimulation of IN. The apoptosis of positive cells of gastric mucosa was decreased by chemical stimulation of IN, whereas proliferation increased. The gastric juice volume, acidity, and total acid output were all decreased after the chemical stimulation of IN. These results indicated that IN participates in regulation of GI-RI and is a specific area in central nervous system for exerting protective effects on GI-RI. DSCP, LHA and GSN may involve in this process. Apoptosis and proliferation may mediate this protective process in rats too.


Inhibition of deprivation-induced food intake by GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms.

  • Ganesan L Kamatchi‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2012‎

The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility.


Early life GABAA blockade alters the synaptic plasticity and cognitive functions in male and female rats.

  • Forouzan Mohammadian‎ et al.
  • European journal of pharmacology‎
  • 2022‎

Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adults, has a critical contribution to balanced excitatory-inhibitory networks in the brain. Alteration in depolarizing action of GABA during early life is connected to a wide variety of neurodevelopmental disorders. Additionally, the effects of postnatal GABA blockade on neuronal synaptic plasticity are not known and therefore, we set out to determine whether postnatal exposure to bicuculline, a competitive antagonist of GABAA receptors, affects electrophysiologic changes in hippocampal CA1 neurons later on. To this end, male and female Wistar rats received vehicle or bicuculline (300 μg/kg) on postnatal days (PNDs) 7, 9 and 11, and then underwent different behavioral and electrophysiological examinations in adulthood. Postnatal exposure to bicuculline did not affect basic synaptic transmission but led to a pronounced decrease in paired-pulse facilitation (PPF) in CA1 pyramidal neurons. Bicuculline treatment also attenuated the long-term potentiation (LTP) and long-term depression (LTD) of CA1 neurons accompanied by decreased theta-burst responses in male and female adult rats. These electrophysiology findings together with the reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampus and prefrontal cortex reliably explain the disturbance in spatial reference and working memories of bicuculline-treated animals. This study suggests that postnatal GABAA blockade deteriorates short- and long-term synaptic plasticity of hippocampal CA1 neurons and related encoding of spatial memory in adulthood.


Is fragile X mental retardation protein involved in activity-induced plasticity of dendritic spines?

  • Menahem Segal‎ et al.
  • Brain research‎
  • 2003‎

Dendritic morphology of 2-week-old cultured neurons, taken from postnatal day 1 fragile X mental retardation gene1 knock out (FMR1-/-) mice hippocampus, were compared with cells taken from wild type mice. Under control conditions the FMR1-/- neurons displayed significantly lower spine densities compared to wild type neurons. Pharmacological stimulation of electrical activity, induced by bicuculline, caused a reduction in dendritic spine density in both the FMR1-/- and the wild type cells. In both groups, bicuculline induced a significant shrinkage of spines that were occupied by one or more synaptophysin-immunoreactive presynaptic terminals. The concentration of FMR1 in the wild type cultures was not affected by bicuculline treatment. These experiments indicate that FMR1 is not likely to be an essential factor in activity-modulated morphological plasticity of dendritic spines in cultured hippocampal neurons.


Modulation of GAP-43 mRNA by GABA and glutamate in cultured cerebellar granule cells.

  • L M Console-Bram‎ et al.
  • Brain research‎
  • 1998‎

Expression of GAP-43 in the cerebellum and selected regions of the brain has been shown to be developmentally regulated. Localization of GAP-43 mRNA within granule cells of the immature and mature rat cerebellum has been demonstrated by in situ hybridization. Higher levels are detected in the neonate compared to the adult. To determine if the cerebellar neurotransmitters, GABA (gamma-amino-butyric acid) and glutamate are involved in the modulation of GAP-43 expression, cultured cerebellar granule cells were exposed to these transmitters. Cultures were treated with glutamate, GABA, or the agonists/antagonists to their receptors in serum-free media for 5-7 days. Analysis of the levels of GAP-43 mRNA by in situ hybridization indicated that a 7-day exposure to GABA (25 and 50 microM) significantly lowered levels of granule cell GAP-43 mRNA. Specific agonists to the GABAA (muscimol) and GABAB (baclofen) receptors produced a decrease similar to that observed for GABA. Results from these studies also indicated that exposure to non-NMDA (CNQX) and NMDA (CPP, MK-801) glutamate receptor antagonists, and a metabotropic receptor glutamate agonist (ACPD), decreased the level of GAP-43 mRNA. The involvement of GABA and glutamate in the modulation of GAP-43 expression was corroborated by Northern hybridization. These studies revealed that a 5-day exposure to GABA decreased the cellular content of GAP-43 mRNA by 21% whereas exposure to glutamate resulted in a 37% increase. Findings from the studies reported here, using an in vitro cerebellar granule cell model, suggest that levels of GAP-43 mRNA, in vivo, are modulated by input from both excitatory glutamatergic mossy fibers and inhibitory GABAergic Golgi interneurons. Thus, modulation of GAP-43 mRNA by these neurotransmitters may influence granule cell maturation during development in the neonate and neuroplasticity in the adult, possibly at the parallel fiber-Purkinje cell synapse.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: