Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Effects of benzydamine and mouthwashes containing benzydamine on Candida albicans adhesion, biofilm formation, regrowth, and persistence.

  • Andrea Ardizzoni‎ et al.
  • Clinical oral investigations‎
  • 2022‎

To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed).


Benzydamine plays a role in limiting inflammatory pain induced by neuronal sensitization.

  • Magdalena Nikolaeva-Koleva‎ et al.
  • Molecular pain‎
  • 2023‎

Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. On the other hand, the role of benzydamine as neuronal excitability modulator has not yet fully explored. Thus, we studied benzydamine's effect over primary cultured DRG nociceptors excitability and after acute and chronic inflammatory sensitization, as a model to evaluate relative nociceptive response. Benzydamine demonstrated to effectively inhibit neuronal basal excitability reducing its firing frequency and increasing rheobase and afterhyperpolarization amplitude. Its effect was time and dose-dependent. At higher doses, benzydamine induced changes in action potential wavelength, decreasing its height and slightly increasing its duration. Moreover, the compound reduced neuronal acute and chronic inflammatory sensitization. It inhibited neuronal excitability mediated either by an inflammatory cocktail, acidic pH or high external KCl. Notably, higher potency was evidenced under inflammatory sensitized conditions. This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Nav1.8 channel but had no effect over Kv7.2, Kv7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.


Flavin-containing monooxygenase mediated metabolism of benzydamine in perfused brain and liver.

  • A Kawaji‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

Benzydamine (BZY) N-oxidation mediated by flavin-containing monooxygenase (FMO) was evaluated in perfused brain and liver. Following 20 min of perfusion with modified Ringer solution, the infusion of BZY into brain or liver led to production of BZY N-oxide. BZY N-oxide, a metabolite of BZY oxidized exclusively by FMO, was mostly recovered in the effluent without undergoing further metabolism or reduction back to the parent substrate. The BZY N-oxide formation rate increased as the infusion concentration of BZY increased both in perfused brain and perfused liver. BZY N-oxidation activities in perfused rat brain and liver were 4.2 nmol/g brain/min and 50 nmol/g liver/min, respectively, although the BZY N-oxidation activity in brain homogenates was one 4000th that in liver homogenates. This is the first study of FMO activity in brain in situ.


Benzydamine Reverses TMexCD-TOprJ-Mediated High-Level Tigecycline Resistance in Gram-Negative Bacteria.

  • Ziwen Tong‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

Recently, a novel efflux pump gene cluster called tmexCD1-toprJ1 and its variants have been identified, which undermine the antibacterial activity of tigecycline, one of the last remaining options effective against multidrug-resistant (MDR) Gram-negative bacteria. Herein, we report the potent synergistic effect of the non-steroidal anti-inflammatory drug benzydamine in combination with tigecycline at sub-inhibitory concentrations against various temxCD-toprJ-positive Gram-negative pathogens. The combination of benzydamine and tigecycline killed all drug-resistant pathogens during 24 h of incubation. In addition, the evolution of tigecycline resistance was significantly suppressed in the presence of benzydamine. Studies on the mechanisms of synergism showed that benzydamine disrupted the bacterial proton motive force and the functionality of this kind of novel plasmid-encoded resistance-nodulation-division efflux pump, thereby promoting the intracellular accumulation of tigecycline. Most importantly, the combination therapy of benzydamine and tigecycline effectively improved the survival of Galleria mellonella larvae compared to tigecycline monotherapy. Our findings provide a promising drug combination therapeutic strategy for combating superbugs carrying the tmexCD-toprJ gene.


Reversion of antibiotic resistance in multidrug-resistant pathogens using non-antibiotic pharmaceutical benzydamine.

  • Yuan Liu‎ et al.
  • Communications biology‎
  • 2021‎

Antimicrobial resistance has been a growing concern that gradually undermines our tradition treatment regimens. The fact that few antibacterial drugs with new scaffolds or targets have been approved in the past two decades aggravates this crisis. Repurposing drugs as potent antibiotic adjuvants offers a cost-effective strategy to mitigate the development of resistance and tackle the increasing infections by multidrug-resistant (MDR) bacteria. Herein, we found that benzydamine, a widely used non-steroidal anti-inflammatory drug in clinic, remarkably potentiated broad-spectrum antibiotic-tetracyclines activity against a panel of clinically important pathogens, including MRSA, VRE, MCRPEC and tet(X)-positive Gram-negative bacteria. Mechanistic studies showed that benzydamine dissipated membrane potential (▵Ψ) in both Gram-positive and Gram-negative bacteria, which in turn upregulated the transmembrane proton gradient (▵pH) and promoted the uptake of tetracyclines. Additionally, benzydamine exacerbated the oxidative stress by triggering the production of ROS and suppressing GAD system-mediated oxidative defensive. This mode of action explains the great bactericidal activity of the doxycycline-benzydamine combination against different metabolic states of bacteria involve persister cells. As a proof-of-concept, the in vivo efficacy of this drug combination was evidenced in multiple animal infection models. These findings indicate that benzydamine is a potential tetracyclines adjuvant to address life-threatening infections by MDR bacteria.


Benzydamine inhibits osteoclast differentiation and bone resorption via down-regulation of interleukin-1 β expression.

  • Han Saem Son‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2020‎

Bone diseases such as osteoporosis and periodontitis are induced by excessive osteoclastic activity, which is closely associated with inflammation. Benzydamine (BA) has been used as a cytokine-suppressive or non-steroidal anti-inflammatory drug that inhibits the production of pro-inflammatory cytokines or prostaglandins. However, its role in osteoclast differentiation and function remains unknown. Here, we explored the role of BA in regulating osteoclast differentiation and elucidated the underlying mechanism. BA inhibited osteoclast differentiation and strongly suppressed interleukin-1β (IL-1β) production. BA inhibited osteoclast formation and bone resorption when added to bone marrow-derived macrophages and differentiated osteoclasts, and the inhibitory effect was reversed by IL-1β treatment. The reporter assay and the inhibitor study of IL-1β transcription suggested that BA inhibited nuclear factor-κB and activator protein-1 by regulating IκB kinase, extracellular signal regulated kinase and P38, resulting in the down-regulation of IL-1β expression. BA also promoted osteoblast differentiation. Furthermore, BA protected lipopolysaccharide- and ovariectomy-induced bone loss in mice, suggesting therapeutic potential against inflammation-induced bone diseases and postmenopausal osteoporosis.


Effects of benzydamine hydrochloride on postoperative sore throat after extubation in children: a randomized controlled trial.

  • Hyung-Been Yhim‎ et al.
  • BMC anesthesiology‎
  • 2020‎

Postoperative sore throat (POST) is a common, undesirable result of endotracheal intubation during general anaesthesia. This study aimed to evaluate the effectiveness of benzydamine hydrochloride (BH) spray in reducing the incidence of POST in paediatric patients.


Effectivity of benzydamine hydrochloride gargle to reduce propofol consumption in endoscopic retrograde cholangiopancreatography procedure: a randomized controlled trial.

  • Adhrie Sugiarto‎ et al.
  • BMC anesthesiology‎
  • 2020‎

Endoscopic Retrograde Cholangiopancreatography (ERCP) is a complex endoscopic procedure that requires moderate to deep sedation. Propofol is the sedative agent of choice for sedation in ERCP due to its fast distribution and fast elimination time without a cumulative effect after infusion, resulting in shorter recovery time. Benzydamine hydrochloride is a topical non-steroidal anti-inflammatory drug that has analgesic, local anesthetic, and anti-inflammatory effects that have been known to be effective in reducing postoperative sore throat. Combination of propofol and topical analgesic may provide adequate sedation and reduce propofol consumption. This study aimed to determine the effectivity of benzydamine hydrochloride gargling in reducing propofol consumption in the ERCP procedure.


Oral Health-Related Quality of Life and the Use of Oral and Topical Nonsteroidal Anti-Inflammatory Drugs for Pericoronitis.

  • Abdullah Alalwani‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2019‎

BACKGROUND Pericoronitis is inflammation of the tissue surrounding a third molar, or wisdom tooth. This study aimed to evaluate the effects of oral and topical analgesic nonsteroidal anti-inflammatory drugs (NSAIDs) on oral health-related quality of life (OHQoL), in terms of oral health and lifestyle, in patients with symptomatic pericoronitis. MATERIAL AND METHODS The study included 60 patients who presented with pericoronitis and who did not undergo surgery within the following seven days. The patients were randomly assigned to three groups and were treated with oral diclofenac (N=20), oral flurbiprofen (N=20), and topical benzydamine (N=20). OHQoL was assessed for all study participants with a self-reported eight-item scale that was developed to evaluate pericoronitis. The total OHQoL scores were calculated for each day during the seven-day study period. RESULTS The study group treated with topical benzydamine had a significantly greater improvement in the OHQoL scores compared with the oral diclofenac and oral flurbiprofen groups on the first four days. Comparison of patients treated with diclofenac and flurbiprofen showed no significant differences for all seven days. A significant initial improvement in OHQoL was found on day 1 for the benzydamine group, on day 2 for the flurbiprofen group, and day 3 for the diclofenac group. CONCLUSIONS In this study, topical benzydamine was found to be a more effective alternative to oral NSAID analgesics, diclofenac and flurbiprofen, in improving OHQoL in patients with pericoronitis.


Intraoral Drug Delivery: Highly Thiolated κ-Carrageenan as Mucoadhesive Excipient.

  • Gergely Kali‎ et al.
  • Pharmaceutics‎
  • 2023‎

This study aims to design a novel thiolated κ-carrageenan (κ-CA-SH) and evaluate its potential as an excipient for the design of mucoadhesive drug delivery systems.


Production of drug metabolites by human FMO3 in Escherichia coli.

  • Gianluca Catucci‎ et al.
  • Microbial cell factories‎
  • 2020‎

In the course of drug discovery and development process, sufficient reference standards of drug metabolites are required, especially for preclinical/clinical or new therapeutic drugs. Whole-cell synthesis of drug metabolites is of great interest due to its low cost, low environmental impact and specificity of the enzymatic reaction compared to chemical synthesis. Here, Escherichia coli (E. coli) JM109 cells over-expressing the recombinant human FMO3 (flavin-containing monooxygenase isoform 3) were used for the conversions of clomiphene, dasatinib, GSK5182 and tozasertib to their corresponding N-oxide metabolites.


Inter-individual and inter-regional variations in enteric drug metabolizing enzyme activities: Results with cryopreserved human intestinal mucosal epithelia (CHIM) from the small intestines of 14 donors.

  • Albert P Li‎ et al.
  • Pharmacology research & perspectives‎
  • 2020‎

We have previously reported successful isolation and cryopreservation of human intestinal mucosa (CHIM) with retention of viability and drug metabolizing enzyme activities. Here we report the results of the quantification of drug metabolizing enzyme activities in CHIM from different regions of the small intestines from 14 individual donors. CHIM were isolated from the duodenum, jejunum, and ileum of 10 individuals, and from 10 consecutive 12-inch segments starting from the pyloric sphincter of human small intestines from four additional individuals. P450 and non-P450 drug metabolizing enzyme activities (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A, UGT, SULT, FMO, MAO, AO, NAT1, and NAT2) were quantified via incubation with pathway-selective substrates. Quantifiable activities were observed for all pathways except for CYP2A6. Comparison of the duodenum, jejunum, and ileum in 10 donors shows jejunum had higher activities for CYP2C9, CYP3A, UGT, SULT, MAO, and NAT1. Further definition of regional variations with CHIM from ten 12-inch segments of the proximal small intestine shows that the segments immediately after the first 12-inch segment (duodenum) had the highest activity for most of the drug metabolizing enzymes but with substantial differences among the four donors. Our overall results demonstrate that there are substantial individual differences in drug metabolizing enzymes and that jejunum, especially the regions immediately after the duodenum, had the highest drug metabolizing enzyme activities.


3D printing of multilayered orodispersible films with in-process drying.

  • Jan Elbl‎ et al.
  • International journal of pharmaceutics‎
  • 2020‎

The aim of this study was to prepare benzydamine hydrochloride loaded orodispersible films using modified semisolid extrusion 3D printing method. An innovative approach was developed where thin layer of drug loaded dispersion is printed and dried before printing of subsequent layers. Layer-by-layer drying as the in process step improves mechanical properties of films, uniformity of drug content and allows faster preparation of films in compounding settings due to shortening of drying time. Orodispersible films consisted of film forming maltodextrin, sorbitol as a plasticizer and hydroxyethylcellulose as a thickening agent. The height of the digital model showed excellent correlation with the disintegration time, weight, thickness and mechanical properties of prepared films. Drug content, predefined by volume of digital model and concentration of drug in print dispersion, showed excellent uniformity. The modified printing method shows great promise in a compounding production of personalized film dosage forms, and brings in possibilities such as one step preparation of films with compartmented drugs and incorporation of taste masking or release control layers.


Drug metabolite synthesis by immobilized human FMO3 and whole cell catalysts.

  • Chongliang Gao‎ et al.
  • Microbial cell factories‎
  • 2019‎

Sufficient reference standards of drug metabolites are required in the drug discovery and development process. However, such drug standards are often expensive or not commercially available. Chemical synthesis of drug metabolite is often difficulty due to the highly regio- and stereo-chemically demanding. The present work aims to construct stable and efficient biocatalysts for the generation of drug metabolites in vitro.


Pulmonary Metabolism of Substrates for Key Drug-Metabolizing Enzymes by Human Alveolar Type II Cells, Human and Rat Lung Microsomes, and the Isolated Perfused Rat Lung Model.

  • Katarina Rubin‎ et al.
  • Pharmaceutics‎
  • 2020‎

Significant pulmonary metabolism of inhaled drugs could have drug safety implications or influence pharmacological effectiveness. To study this in vitro, lung microsomes or S9 are often employed. Here, we have determined if rat and human lung microsomes are fit for purpose or whether it is better to use specific cells where drug-metabolizing enzymes are concentrated, such as alveolar type II (ATII) cells. Activities for major hepatic and pulmonary human drug-metabolizing enzymes are assessed and the data contextualized towards an in vivo setting using an ex vivo isolated perfused rat lung model. Very low rates of metabolism are observed in incubations with human ATII cells when compared to isolated hepatocytes and fewer of the substrates are found to be metabolized when compared to human lung microsomal incubations. Reactions selective for flavin-containing monooxygenases (FMOs), CYP1B1, CYP2C9, CYP2J2, and CYP3A4 all show significant rates in human lung microsomal incubations, but all activities are higher when rat lung microsomes are used. The work also demonstrates that a lung microsomal intrinsic clearance value towards the lower limit of detection for this parameter (3 µL/min/mg protein) results in a very low level of pulmonary metabolic clearance during the absorption period, for a drug dosed into the lung in vivo.


Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine.

  • Chongliang Gao‎ et al.
  • Scientific reports‎
  • 2017‎

Human flavin-containing monooxygenase 3 (hFMO3) catalyses the oxygenation of a wide variety of compounds including drugs as well as dietary compounds. It is the major hepatic enzyme involved in the production of the N-oxide of trimethylamine (TMAO) and clinical studies have uncovered a striking correlation between plasma TMAO concentration and cardiovascular disease. Certain mutations within the hFMO3 gene cause defective trimethylamine (TMA) N-oxygenation leading to trimethylaminuria (TMAU) also known as fish-odour syndrome. In this paper, the inactivation mechanism of a TMAU-causing polymorphic variant, N61S, is investigated. Transient kinetic experiments show that this variant has a > 170-fold lower NADPH binding affinity than the wild type. Thermodynamic and spectroscopic experiments reveal that the poor NADP+ binding affinity accelerates the C4a-hydroperoxyFAD intermediate decay, responsible for an unfavourable oxygen transfer to the substrate. Steady-state kinetic experiments show significantly decreased N61S catalytic activity towards other substrates; methimazole, benzydamine and tamoxifen. The in vitro data are corroborated by in silico data where compared to the wild type enzyme, a hydrogen bond required for the stabilisation of the flavin intermediate is lacking. Taken together, the data presented reveal the molecular basis for the loss of function observed in N61S mutant.


Bilayer Mucoadhesive Buccal Film for Mucosal Ulcers Treatment: Development, Characterization, and Single Study Case.

  • Thais F R Alves‎ et al.
  • Pharmaceutics‎
  • 2020‎

The formation of mucosal ulcers is an end result of epithelial damage, and it occurs due to some specific causes, such as trauma, aphthous stomatitis, lichen planus and lichenoid reactions, cytotoxic effects of chemotherapy and radiation, and drug-induced hypersensitivity reactions and malignant settings. This study focused on films for target drug delivery with respect to the treatment of the diseases of the oral mucosa, specifically mucositis. The results of a single clinical study as a pre-experimental design was performed and followed up to the outcome until 30 days. The polymeric film was prepared in a mucoadhesive bilayer structure: the basal layer with lidocaine HCl had a faster release than the apical layer with benzydamine HCl and N-acetyl-cysteine. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and SEM characterized the physical-chemical and morphological properties. The cell viability and cytotoxicity were evaluated in cell line MCF7. The transport mechanism of the solvent (swelling) and the drugs in the basal or apical layer (drug release) was explained with mathematical models. To evaluate the effect of movement inside the mouth, the folding endurance was determined. The mucoadhesive bilayer film is biologically safe and stimulates cellular proliferation. A single study in vivo demonstrated the therapeutic effect of the mucoadhesive bilayer film in buccal mucositis.


Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties.

  • Gautier Bailleul‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Mammals rely on the oxidative flavin-containing monooxygenases (FMOs) to detoxify numerous and potentially deleterious xenobiotics; this activity extends to many drugs, giving FMOs high pharmacological relevance. However, our knowledge regarding these membrane-bound enzymes has been greatly impeded by the lack of structural information. We anticipated that ancestral-sequence reconstruction could help us identify protein sequences that are more amenable to structural analysis. As such, we hereby reconstructed the mammalian ancestral protein sequences of both FMO1 and FMO4, denoted as ancestral flavin-containing monooxygenase (AncFMO)1 and AncFMO4, respectively. AncFMO1, sharing 89.5% sequence identity with human FMO1, was successfully expressed as a functional enzyme. It displayed typical FMO activities as demonstrated by oxygenating benzydamine, tamoxifen, and thioanisole, drug-related compounds known to be also accepted by human FMO1, and both NADH and NADPH cofactors could act as electron donors, a feature only described for the FMO1 paralogs. AncFMO1 crystallized as a dimer and was structurally resolved at 3.0 Å resolution. The structure harbors typical FMO aspects with the flavin adenine dinucleotide and NAD(P)H binding domains and a C-terminal transmembrane helix. Intriguingly, AncFMO1 also contains some unique features, including a significantly porous and exposed active site, and NADPH adopting a new conformation with the 2'-phosphate being pushed inside the NADP+ binding domain instead of being stretched out in the solvent. Overall, the ancestrally reconstructed mammalian AncFMO1 serves as the first structural model to corroborate and rationalize the catalytic properties of FMO1.


Evaluation of Human Hepatocyte Drug Metabolism Carrying High-Risk or Protection-Associated Liver Disease Genetic Variants.

  • Lanuza A P Faccioli‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.


Human flavin-containing monooxygenase 3: Structural mapping of gene polymorphisms and insights into molecular basis of drug binding.

  • Chongliang Gao‎ et al.
  • Gene‎
  • 2016‎

Human hepatic flavin-containing monooxygenase 3 (hFMO3) catalyses the monooxygenation of carbon-bound reactive heteroatoms and plays an important role in the metabolism of drugs and xenobiotics. Although numerous hFMO3 allelic variants have been identified in patients and their biochemical properties well-characterised in vitro, the molecular mechanisms underlying loss-of-function mutations have still not been elucidated due to lack of detailed structural information of hFMO3. Therefore, in this work a 3D structural model of hFMO3 was generated by homology modeling, evaluated by a variety of different bioinformatics tools, refined by molecular dynamics simulations and further assessed based on in vitro biochemical data. The molecular dynamics simulation results highlighted 4 flexible regions of the protein with some of them overlapping the data from trypsin digest. This was followed by structural mapping of 12 critical polymorphic variants and molecular docking experiments with five different known substrates/drugs of hFMO3 namely, benzydamine, sulindac sulfide, tozasertib, methimazole and trimethylamine. Localisation of these mutations on the hFMO3 model provided a structural explanation for their observed biological effects and docked models of hFMO3-drug complexes gave insights into their binding mechanism demonstrating that nitrogen- and sulfur-containing substrates interact with the isoalloxazine ring through Pi-Cation interaction and Pi-Sulfur interactions, respectively. Finally, the data presented give insights into the drug binding mechanism of hFMO3 which could be valuable not only for screening of new chemical entities but more significantly for designing of novel inhibitors of this important Phase I drug metabolising enzyme.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: