Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

N-benzhydryl quinuclidine compounds are a potent and Src kinase-independent inhibitor of NALCN channels.

  • Suyun Hahn‎ et al.
  • British journal of pharmacology‎
  • 2020‎

NALCN is a Na+ leak, GPCR-activated channel that regulates the resting membrane potential and neuronal excitability. Despite numerous possible roles for NALCN in both normal physiology and disease processes, lack of specific blockers hampers further investigation.


Facile synthesis of symmetrical bis(benzhydryl)ethers using p-toluenesulfonyl chloride under solvent-free conditions.

  • Goutam Brahmachari‎ et al.
  • Organic and medicinal chemistry letters‎
  • 2013‎

The benzhydryl ether moiety is widely distributed in nature and constitutes a key structural motif in numerous molecules of significant biological potential and of prospective clinical uses. Solvent-free and cost-effective facile synthesis of symmetrical bis(benzhydryl)ethers is, thus, much desirable.


Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity.

  • Nicola Relitti‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Due to the surge in resistance to common therapies, malaria remains a significant concern to human health worldwide. In chloroquine (CQ)-resistant (CQ-R) strains of Plasmodium falciparum, CQ and related drugs are effluxed from the parasite's digestive vacuole (DV). This process is mediated by mutant isoforms of a protein called CQ resistance transporter (PfCRT). CQ-R strains can be partially re-sensitized to CQ by verapamil (VP), primaquine (PQ) and other compounds, and this has been shown to be due to the ability of these molecules to inhibit drug transport via PfCRT. We have previously developed a series of clotrimazole (CLT)-based antimalarial agents that possess inhibitory activity against PfCRT (4a,b). In our endeavor to develop novel PfCRT inhibitors, and to perform a structure-activity relationship analysis, we synthesized a new library of analogues. When the benzhydryl system was linked to a 4-aminoquinoline group (5a-f) the resulting compounds exhibited good cytotoxicity against both CQ-R and CQ-S strains of P. falciparum. The most potent inhibitory activity against the PfCRT-mediated transport of CQ was obtained with compound 5k. When compared to the reference compound, benzhydryl analogues of PQ (5i,j) showed a similar activity against blood-stage parasites, and a stronger in vitro potency against liver-stage parasites. Unfortunately, in the in vivo transmission blocking assays, 5i,j were inactive against gametocytes.


Analgesic and antiallodynic activity of novel anticonvulsant agents derived from 3-benzhydryl-pyrrolidine-2,5-dione in mouse models of nociceptive and neuropathic pain.

  • Anna Rapacz‎ et al.
  • European journal of pharmacology‎
  • 2020‎

The objective of this study was to evaluate analgesic and antiallodynic activity of four new 3-benzhydryl-pyrrolidine-2,5-dione derivatives, which demonstrated previously anticonvulsant activity in the seizure tests in mice. Analgesic activity was examined in acute (the hot plate test), tonic (the formalin test), as well as neuropathic (the oxaliplatin-induced peripheral neuropathy) pain models in mice. Moreover, potential sedative properties and hepatotoxicity were evaluated. To establish the plausible mechanism of action, in vitro assays were carried out. All tested compounds RS 34, RS 37, RS 48, and RS 49, similarly to pregabalin, were active in the second phase of formalin test, a model of tonic pain. The most promising effect was observed for compounds RS 34, RS 48, and RS 49, which in a statistically significant way attenuated the nocifensive response at all tested doses 1, 10, and 30 mg/kg. Furthermore, all compounds at a dose of 30 mg/kg revealed antiallodynic activity in neuropathic pain related to chemotherapy-induced peripheral neuropathy in mice. In experimental tests on three compounds RS 34, RS 37 and RS 48 at active doses no sedative properties were registered. In the in vitro assay the selected molecule RS 34 did not induce cytotoxic effect on hepatoma cells. The binding and functional studies did not provide firm evidence on possible mechanism of action of these derivatives. In conclusion, the tested pyrrolidine-2,5-dione derivatives with antiseizure activity exerted also analgesic and antiallodynic effects in mouse models of pain.


Novel NSAID 1-acyl-4-cycloalkyl/arylsemicarbazides and 1-acyl-5-benzyloxy/hydroxy carbamoylcarbazides as potential anticancer agents and antioxidants.

  • I Perković‎ et al.
  • European journal of medicinal chemistry‎
  • 2012‎

The novel 1-acyl-4-cycloalkyl/arylsemicarbazides (5a-y) and 1-acyl-5-benzyloxy/hydroxycarbamoylcarbazides (8a-f) derived from the nonsteroidal anti-inflammatory drugs ibuprofen, fenoprofen and reduced ketoprofen were prepared, fully chemically characterized and evaluated for their cytostatic, antiviral and antioxidant activities. Compounds 5 and 8 consist of a region rich in electronegative atoms (five to nine nitrogen and oxygen atoms) framed by aryl or cycloalkyl residues on one or both terminal ends. The synthetic pathways applied for the preparation of the title compounds involved a benzotriazole as a synthetic auxiliary in several steps. Three of the tested compounds, namely 4-benzhydryl-1-[2-(3-phenoxyphenyl)propanoyl]semicarbazide (5l), 4-benzhydryl-1-[2-(3-benzylphenyl)propanoyl]semicarbazide (5s), and 4-benzhydryl-1-[2-(4-isobutylphenyl)propanoyl]semicarbazide (5f) showed pronounced antiproliferative activity in vitro against six cancer cell lines (IC(50)=3-23 μM). The same compounds highly inhibited soybean lipoxygenase (IC(50)=60 and 51.5 μM) and lipid peroxidation as well (99, 88 and 74%, respectively). 4-Benzyloxy-1-[2-(4-isobutylphenyl)propanoyl]semicarbazide (5t) and 5-benzyloxycarbamoyl-1-[2-(3-benzylphenyl)propanoyl]carbazide (8c) exerted complete lipid peroxidation inhibition. Semicarbazides 5w-y and carbazides 8d-f bearing a hydroxamic acid/hydroxyurea moiety showed a modest antiradical activity in DPPH test, while the best radical scavenger was 1-(1-benzotriazolecarbonyl)-4-benzyloxysemicarbazide (7). None of the compounds were inhibitory to a broad panel of DNA and RNA viruses in the cell culture at subtoxic concentrations.


Insights into the anticancer activity of chiral alkylidene-β-lactams and alkylidene-γ-lactams: Synthesis and biological investigation.

  • Américo J S Alves‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2022‎

Chiral alkylidene-β-lactams and alkylidene-γ-lactams were synthesized and screened for their in vitro activity against four human cancer cell lines (melanoma, esophageal, lung and fibrosarcoma carcinoma). Alkylidene-β-lactams were synthesized via Wittig reaction of diverse phosphorus ylides with benzhydryl 6-oxopenicillanate, derived from 6-aminopenicillanic acid. Moreover, novel chiral alkylidene-γ-lactams were synthesized through a multistep strategy starting from a chiral substrate (d-penicillamine). The in vitro assays allowed the identification of four compounds with IC50 values < 10 μM for A375 cell line, and three compounds with IC50 values < 10 μM for OE19 cell line. The effect of the most promising compounds on cell death mechanism, reactive oxygen species generation as well as the evaluation of their ability to act as MMP-9 inhibitors were studied. The reported results unveil the potential of alkylidene-β-lactams as anticancer agents.


Synthesis of novel benzenesulfamide derivatives with inhibitory activity against human cytosolic carbonic anhydrase I and II and Vibrio cholerae α- and β-class enzymes.

  • Silvia Bua‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

The synthesis of a new series of sulfamides incorporating ortho-, meta, and para-benzenesulfamide moieties is reported, which were investigated for the inhibition of two human (h) isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA I and II, and two Vibrio cholerae enzymes, belonging to the α- and β-CA classes (VchCAα, VchCAβ). The compounds were prepared by using the "tail approach", aiming to overcome the scarcity of selective inhibition profiles associated to CA inhibitors belonging to the zinc binders. The built structure-activity relationship showed that the incorporation of benzhydryl piperazine tails on a phenyl sulfamide scaffold determines rather good efficacies against hCA I and VchCAα, with several compounds showing KIs < 100 nM. The activity was lower against hCA II and VchCAβ, probably due to the fact that the incorporated tails are quite bulky. The obtained evidences allow us to continue the investigations of different tails/zinc binding groups, with the purpose to increase the effectiveness/selectivity of such inhibitors against bacterial CAs from pathogens, affording thus potential new anti-infectives.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: