Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

Antiviral Mechanisms of N-Phenyl Benzamides on Coxsackie Virus A9.

  • Mira Laajala‎ et al.
  • Pharmaceutics‎
  • 2023‎

Enteroviruses are one of the most abundant groups of viruses infecting humans, and yet there are no approved antivirals against them. To find effective antiviral compounds against enterovirus B group viruses, an in-house chemical library was screened. The most effective compounds against Coxsackieviruses B3 (CVB3) and A9 (CVA9) were CL212 and CL213, two N-phenyl benzamides. Both compounds were more effective against CVA9 and CL213 gave a better EC50 value of 1 µM with high a specificity index of 140. Both drugs were most effective when incubated directly with viruses suggesting that they mainly bound to the virions. A real-time uncoating assay showed that the compounds stabilized the virions and radioactive sucrose gradient as well as TEM confirmed that the viruses stayed intact. A docking assay, taking into account larger areas around the 2-and 3-fold axes of CVA9 and CVB3, suggested that the hydrophobic pocket gives the strongest binding to CVA9 but revealed another binding site around the 3-fold axis which could contribute to the binding of the compounds. Together, our data support a direct antiviral mechanism against the virus capsid and suggest that the compounds bind to the hydrophobic pocket and 3-fold axis area resulting in the stabilization of the virion.


5-(4H)-Oxazolones and Their Benzamides as Potential Bioactive Small Molecules.

  • Evangelos Mavridis‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The five membered heterocyclic oxazole group plays an important role in drug discovery. Oxazolones present a wide range of biological activities. In this article the synthesis of 4-substituted-2-phenyloxazol-5(4H)-ones from the appropriate substituted aldehydes via an Erlenmeyer-Plochl reaction is reported. Subsequently, the corresponding benzamides were produced via a nucleophilic attack of a secondary amine on the oxazolone ring applying microwave irradiation. The compounds are obtained in good yields up to 94% and their structures were confirmed using IR, 1H-NMR, 13C-NMR and LC/MS data. The in vitro anti-lipid peroxidation activity and inhibitory activity against lipoxygenase and trypsin induced proteolysis of the novel derivatives were studied. Inhibition of carrageenin-induced paw edema (CPE) and nociception was also determined for compounds 4a and 4c. Oxazolones 2a and 2c strongly inhibit lipid peroxidation, followed by oxazolones 2b and 2d with an average inhibition of 86.5%. The most potent lipoxygenase inhibitor was the bisbenzamide derivative 4c, with IC50 41 μΜ. The benzamides 3c, 4a-4e and 5c were strong inhibitors of proteolysis. The replacement of the thienyl moiety by a phenyl group does not favor the protection. Compound 4c inhibited nociception higher than 4a. The replacement of thienyl groups by phenyl ring led to reduced biological activity. Docking studies of the most potent LOX inhibitor highlight interactions through allosteric mechanism. All the potent derivatives present good oral bioavailability.


Substituted benzamides containing azaspiro rings as upregulators of apolipoprotein A-I transcription.

  • Yu Du‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Apolipoprotein A-I (Apo A-I) is the principal protein component of high density lipoprotein (HDL), which is generally considered as a potential therapeutic target against atherosclerosis. The understanding of the Apo A-I regulation mechanism has fuelled the development of novel HDL targeted therapeutic approaches. To identify novel agents that can upregulate Apo A-I expression, we performed a cell-based reporter assay to screen 25,600 small molecules. Based on the dataset obtained from screening, a series of novel analogs of substituted benzamides containing azaspiro rings were assessed for their ability to induce the transcription of the Apo A-I gene, and the structure-activity relationship (SAR) around these analogs was also proposed. The results indicated that the trifluoromethyl substituted benzamide containing an azaspiro ring is a promising backbone for designing Apo A-I transcriptional upregulator and could be viable leads for development of new drugs to prevent and treat atherosclerosis in the future.


N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae.

  • George A Naclerio‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The Centers for Disease Control and Prevention (CDC) recognizes Neisseria gonorrhoeae as an urgent-threat Gram-negative bacterial pathogen. Additionally, resistance to frontline treatment (dual therapy with azithromycin and ceftriaxone) has led to the emergence of multidrug-resistant N. gonorrhoeae, which has caused a global health crisis. The drug pipeline for N. gonorrhoeae has been severely lacking as new antibacterial agents have not been approved by the FDA in the last twenty years. Thus, there is a need for new chemical entities active against drug-resistant N. gonorrhoeae. Trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides are novel compounds with potent activities against Gram-positive bacterial pathogens. Here, we report the discovery of new N-(1,3,4-oxadiazol-2-yl)benzamides (HSGN-237 and -238) with highly potent activity against N. gonorrhoeae. Additionally, these new compounds were shown to have activity against clinically important Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Listeria monocytogenes (minimum inhibitory concentrations (MICs) as low as 0.25 µg/mL). Both compounds were highly tolerable to human cell lines. Moreover, HSGN-238 showed an outstanding ability to permeate across the gastrointestinal tract, indicating it would have a high systemic absorption if used as an anti-gonococcal therapeutic.


Design, synthesis and biological evaluation of biphenyl-benzamides as potent FtsZ inhibitors.

  • Jingjing Deng‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The rapid emergence of antibiotic resistance has become a prevalent threat to public health, thereby development of new antibacterial agents having novel mechanisms of action is in an urgent need. Targeting at the cytoskeletal cell division protein filamenting temperature-sensitive mutant Z (FtsZ) has been validated as an effective and promising approach for antibacterial drug discovery. In this study, a series of novel biphenyl-benzamides as FtsZ inhibitors has been rationally designed, synthesized and evaluated for their antibacterial activities against various Gram-positive bacteria strains. In particular, the most promising compound 30 exhibited excellent antibacterial activities, especially against four different Bacillus subtilis strains, with an MIC range of 0.008 μg/mL to 0.063 μg/mL. Moreover, compound 30 also showed good pharmaceutical properties with low cytotoxicity (CC50 > 20 μg/mL), excellent human metabolic stability (T1/2 = 111.98 min), moderate pharmacokinetics (T1/2 = 2.26 h, F = 61.2%) and in vivo efficacy, which can be identified as a promising FtsZ inhibitor worthy of further profiling.


Optimized anti-pathogenic agents based on core/shell nanostructures and 2-((4-ethylphenoxy)ethyl)-N-(substituted-phenylcarbamothioyl)-benzamides.

  • Carmen Limban‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

The purpose of this study was to design a new nanosystem for catheter surface functionalization with an improved resistance to Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 colonization and subsequent biofilm development. New 2-((4 ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides were synthesized and used for coating a core/shell nanostructure. Their chemical structures were elucidated by NMR, IR and elemental analysis, being in agreement with the proposed ones. Fe(3)O(4)/C(12 )of up to 5 nm size had been synthesized with lauric acid as a coating agent and characterized by XRD, FT-IR, TGA, TEM and biological assays. The catheter pieces were coated with the fabricated nanofluid in magnetic field. The microbial adherence ability was investigated in 6 multiwell plates by using culture based methods and Scanning Electron Microscopy (SEM). The nanoparticles coated with the obtained compounds 1a-c inhibited the adherence and biofilm development ability of the S. aureus and P. aeruginosa tested strains on the catheter functionalized surface, as shown by the reduction of viable cell counts and SEM examination of the biofilm architecture. Using the novel core/shell/adsorption-shell to inhibit the microbial adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with improved anti-biofilm properties.


4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10.

  • Sudarshan Murthy‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

Human Diphtheria toxin-like ADP-ribosyltranferases (ARTD) 10 is an enzyme carrying out mono-ADP-ribosylation of a range of cellular proteins and affecting their activities. It shuttles between cytoplasm and nucleus and influences signaling events in both compartments, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and S phase DNA repair. Furthermore, overexpression of ARTD10 induces cell death. We recently reported on the discovery of a hit compound, OUL35 (compound 1), with 330 nM potency and remarkable selectivity towards ARTD10 over other enzymes in the human protein family. Here we aimed at establishing a structure-activity relationship of the OUL35 scaffold, by evaluating an array of 4-phenoxybenzamide derivatives. By exploring modifications on the linker between the aromatic rings, we identified also a 4-(benzyloxy)benzamide derivative, compound 32, which is potent (IC50 = 230 nM) and selective, and like OUL35 was able to rescue HeLa cells from ARTD10-induced cell death. Evaluation of an enlarged series of derivatives produced detailed knowledge on the structural requirements for ARTD10 inhibition and allowed the discovery of further tool compounds with submicromolar cellular potency that will help in understanding the roles of ARTD10 in biological systems.


Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp. DGC1.

  • Khaled A Shaaban‎ et al.
  • The Journal of antibiotics‎
  • 2012‎

Four new benzamides, pyramidamycins A-D (2-5) along with the new natural 3-hydroxyquinoline-2-carboxamide (6) were isolated from the crude extract of Streptomyces sp. DGC1. Additionally, five other known compounds, namely 2-aminobenzamide (anthranilamide) (1), 4',7-dihydroxyisoflavanone (7), 2'-deoxy-thymidine, 2'-deoxy-uridine and adenosine were also isolated and identified. The structures of the new compounds 2-6 were elucidated by 1D and 2D NMR studies along with HR MS analyses. The isolated compounds 1-6 contained the same amide side chain. The isolated compounds 1-7 were biologically evaluated in comparison with landomycin A against a prostate cancer cell line (PC3) and non-small cell lung cancer cell line (H460) for 48 h and against several bacterial strains. Pyramidamycin C (4) was the most active compound against both PC3 and H460 cell lines (GI(50)=2.473 and 7.339 μM, respectively). Benzamides (1-3) demonstrated inhibitory activity against Kocuria rosea B-1106 (a diameter halo of 13±2 mm for 1; 10±2 mm for 2 and 3). Compound 6 was slightly active against both Escherichia coli DH5α and Micrococcus luteus NRRL B-2618 (diameter halos 8±2 and 9±2 mm, respectively). Taxonomically, the amplified 500-bp 16 S rRNA fragment of the Streptomyces sp. DGC1 had 99% identity (BLAST search) to the 16S rRNA gene of Streptomyces atrovirens strain NRRL B-16357.


Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus.

  • Jure Borišek‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

Autolysin E (AtlE) is a cell wall degrading enzyme that catalyzes the hydrolysis of the β-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units of the bacterial peptidoglycan. Using our recently determined crystal structure of AtlE from Staphylococcus aureus and a combination of pharmacophore modeling, similarity search, and molecular docking, a series of (Phenylureido)piperidinyl benzamides were identified as potential binders and surface plasmon resonance (SPR) and saturation-transfer difference (STD) NMR experiments revealed that discovered compounds bind to AtlE in a lower micromolar range. (phenylureido)piperidinyl benzamides are the first reported non-substrate-like compounds that interact with this enzyme and enable further study of the interaction of small molecules with bacterial AtlE as potential inhibitors of this target.


A Structure-Activity Relationship Study of Bis-Benzamides as Inhibitors of Androgen Receptor-Coactivator Interaction.

  • Tae-Kyung Lee‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The interaction between androgen receptor (AR) and coactivator proteins plays a critical role in AR-mediated prostate cancer (PCa) cell growth, thus its inhibition is emerging as a promising strategy for PCa treatment. To develop potent inhibitors of the AR-coactivator interaction, we have designed and synthesized a series of bis-benzamides by modifying functional groups at the N/C-terminus and side chains. A structure-activity relationship study showed that the nitro group at the N-terminus of the bis-benzamide is essential for its biological activity while the C-terminus can have either a methyl ester or a primary carboxamide. Surveying the side chains with various alkyl groups led to the identification of a potent compound 14d that exhibited antiproliferative activity (IC50 value of 16 nM) on PCa cells. In addition, biochemical studies showed that 14d exerts its anticancer activity by inhibiting the AR-PELP1 interaction and AR transactivation.


Discovery of 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides as novel microRNA-21 inhibitors.

  • Cong-shan Jiang‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2015‎

MicroRNA-21, as an oncogenic miRNA, has caught great attention for medicinal chemists to develop its novel inhibitors for cancer therapy. In the present study, we designed 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides as miR-21 inhibitor candidates on the basis of scaffold hopping. Eighteen compounds were synthesized. The inhibitory activities of synthesized compounds against the expression of miR-21 were evaluated using stem loop RT-qPCR and compound 1j was discovered as the most potent compound, which displayed a time and concentration dependent inhibition manner. In addition, various functional assays such as the expression of miR-21 target gene detected by Western blotting and the cell growth and apoptosis detected by flow cytometric analysis were checked in Hela (human epithelioid cervix carcinoma) and U-87 MG (human glioblastoma) cells to confirm its activity. The results indicate that compound 1j can enhance apoptosis, retard proliferation, and up-regulate PDCD4, a target protein of miR-21. In addition, the compound 1j does not influence the expression of multiple miRNAs and the genes that participate in miRNA universal biosynthesis pathway. These results strongly support the assumption that title compounds can serve as a small molecule inhibitor of miR-21.


Computational Design and Development of Benzodioxane-Benzamides as Potent Inhibitors of FtsZ by Exploring the Hydrophobic Subpocket.

  • Valentina Straniero‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2021‎

Multidrug resistant Staphylococcus aureus is a severe threat, responsible for most of the nosocomial infections globally. This resistant strain is associated with a 64% increase in death compared to the antibiotic-susceptible strain. The prokaryotic protein FtsZ and the cell division cycle have been validated as potential targets to exploit in the general battle against antibiotic resistance. Despite the discovery and development of several anti-FtsZ compounds, no FtsZ inhibitors are currently used in therapy. This work further develops benzodioxane-benzamide FtsZ inhibitors. We seek to find more potent compounds using computational studies, with encouraging predicted drug-like profiles. We report the synthesis and the characterization of novel promising derivatives that exhibit very low MICs towards both methicillin-susceptible and -resistant S. aureus, as well as another Gram positive species, Bacillus subtilis, while possessing good predicted physical-chemical properties in terms of solubility, permeability, and chemical and physical stability. In addition, we demonstrate by fluorescence microscopy that Z ring formation and FtsZ localization are strongly perturbed by our derivatives, thus validating the target.


Spectroscopic, X-ray Diffraction and Density Functional Theory Study of Intra- and Intermolecular Hydrogen Bonds in Ortho-(4-tolylsulfonamido)benzamides.

  • Malose J Mphahlele‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)-NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N-H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


Synthesis and biological evaluation of novel N-substituted benzamides as anti-migration agents for treatment of osteosarcoma.

  • Xiaojing Chen‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

A novel series of novel N-substituted (indole or indazole) benzamides were synthesized, and their anti-tumor properties were evaluated. The majority of tested compounds possessed moderate cytotoxicity, but inspiringly, we verified that active compound 5d presents an astonishing advantage by inhibiting the adhesion, migration, and invasion of osteosarcoma (OS) cells in vitro. Mechanistically, we confirmed 5d inhibited the migration ability of OS cells via the expression of genes related to adhesion, migration, and invasion. This effects of 5d suggest that it can be used as a potential chemotherapeutic drug to some aggressive and/or metastatic cancers, as well as in combination with other clinical anti-cancer drugs. In turn, this could enhance the therapeutic effect or reduce the risk of cell migration.


Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents.

  • Tooba Abdizadeh‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

Histone deacetylases (HDACs) are attractive therapeutic targets for the treatment of cancer and other diseases. It has four classes (I-IV), among them especially class I isozyme are involved in promoting tumor cells proliferation, angiogenesis, differentiation, invasion and metastasis and also viable targets for cancer therapeutics. A novel series of coumarin-based benzamides was designed and synthesized as HDAC inhibitors. The cytotoxic activity of the synthesized compounds (8a-u) was evaluated against six human cancer cell lines including HCT116, A2780, MCF7, PC3, HL60 and A549 and a single normal cell line (Huvec). We evaluated their inhibitory activities against pan HDAC and HDAC1 isoform. Four compounds (8f, 8q, 8r and 8u) showed significant cytotoxicity with IC50 in the range of 0.53-57.59 μM on cancer cells and potent pan-HDAC inhibitory activity (consists of HDAC isoenzymes) (IC50 = 0.80-14.81 μM) and HDAC1 inhibitory activity (IC50 = 0.47-0.87 μM and also, had no effect on Huvec (human normal cell line) viability (IC50 > 100 μM). Among them, 8u displayed a higher potency for HDAC1 inhibition with IC50 value of 0.47 ± 0.02 μM near equal to the reference drug Entinostat (IC50 = 0.41 ± 0.06 μM). Molecular docking studies and Molecular dynamics simulation of compound 8a displayed possible mode of interaction between this compound and HDAC1enzyme.


Structure-Activity Relationships of Benzamides and Isoindolines Designed as SARS-CoV Protease Inhibitors Effective against SARS-CoV-2.

  • Armin Welker‎ et al.
  • ChemMedChem‎
  • 2021‎

Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro . Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.


Bioevaluation of novel anti-biofilm coatings based on PVP/Fe3O4 nanostructures and 2-((4-ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides.

  • Carmen Limban‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies.


Inhibition of PCAF histone acetyltransferase, cytotoxicity and cell permeability of 2-acylamino-1-(3- or 4-carboxy-phenyl)benzamides.

  • Woong Jae Park‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenyl)benzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B) assay against seven human cancer cell lines: HT-29 (colon), HCT-116 (colon), MDA-231 (breast), A549 (lung), Hep3B (hepatoma), HeLa (cervical) and Caki (kidney) and one normal cell line (HSF). Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC(50): 29.17 μM), human lung cancer (A549, IC₅₀: 32.09 μM) cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC₅₀: 35.49 μM and HCT 116, IC₅₀: 27.56 μM), human lung cancer (A549, IC₅₀: 30.69 μM), and human cervical cancer (HeLa, IC₅₀: 34.41 μM) cell lines. The apparent permeability coefficient (P(app), cm/s) values of two compounds (16 and 17) were evaluated as 68.21 and 71.48 × 10⁻⁶ cm/s by Caco-2 cell permeability assay.


Design, synthesis, and bioevaluation of benzamides: novel acetylcholinesterase inhibitors with multi-functions on butylcholinesterase, Aβ aggregation, and β-secretase.

  • Da-Yong Peng‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2012‎

Alzheimer's disease (AD) is a multifactorial syndrome with several target proteins contributing to its etiology. In this study, we conducted a structure-based design and successfully produced a series of new multi-site AChE inhibitors with a novel framework. Compound 2e, characterized by a central benzamide moiety linked to an isoquinoline at one side and acetophenone at the other, was the most potent candidate with K(i) of 6.47nM against human AChE. Particularly, it showed simultaneous inhibitory effects against BChE, Aβ aggregation, and β-secretase. We therefore conclude that compound 2e is a very promising multi-function lead for the treatment of AD.


Discovery of Novel 2,4-Dianilinopyrimidine Derivatives Containing 4-(Morpholinomethyl)phenyl and N-Substituted Benzamides as Potential FAK Inhibitors and Anticancer Agents.

  • Chun Han‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a-8i and 9a-9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: