Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 437 papers

Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole.

  • Laura S Steffens‎ et al.
  • Research in microbiology‎
  • 2010‎

Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium.


MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation.

  • Sean O Ryan‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

N-linked glycans are thought to protect class II major histocompatibility complex (MHC) molecules (MHCII) from proteolytic cleavage and assist in arranging proteins within the immune synapse, but were not thought to directly participate in antigen presentation. Here, we report that antigen-presenting cells (APCs) lacking native complex N-glycans showed reduced MHCII binding and presentation of the T cell activating glycoantigen (GlyAg) polysaccharide A from Bacteroides fragilis but not conventional peptides. APCs lacking native N-glycans also failed to mediate GlyAg-driven T cell activation but activated T cells normally with protein antigen. Mice treated with the mannosidase inhibitor kifunensine to prevent the formation of complex N-glycans were unable to expand GlyAg-specific T cells in vivo upon immunization, yet adoptive transfer of normally glycosylated APCs into these animals overcame this defect. Our findings reveal that MHCII N-glycosylation directly impacts binding and presentation of at least one class of T cell-dependent antigen.


Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis.

  • Jessica V Pierce‎ et al.
  • PloS one‎
  • 2016‎

Enterotoxigenic (ETBF) strains of Bacteroides fragilis are the subset of strains that secrete a toxin called fragilysin (Bft). Although ETBF strains are known to cause diarrheal disease and have recently been associated with colorectal cancer, they have not been well characterized. By sequencing the complete genome of four ETBF strains, we found that these strains exhibit considerable variation at the genomic level. Only a small number of genes that are located primarily in the Bft pathogenicity island (BFT PAI) and the flanking CTn86 conjugative transposon are conserved in all four strains and a fifth strain whose genome was previously sequenced. Interestingly, phylogenetic analysis strongly suggests that the BFT PAI was acquired by non-toxigenic (NTBF) strains multiple times during the course of evolution. At the phenotypic level, we found that the ETBF strains were less fit than the NTBF strain NCTC 9343 and were susceptible to a growth-inhibitory protein that it produces. The ETBF strains also showed a greater tendency to form biofilms, which may promote tumor formation, than NTBF strains. Although the genomic diversity of ETBF strains raises the possibility that they vary in their pathogenicity, our experimental results also suggest that they share common properties that are conferred by different combinations of non-universal genetic elements.


The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice.

  • Wei Zhou‎ et al.
  • Nature communications‎
  • 2022‎

Renal fibrosis is an inevitable outcome of various manifestations of progressive chronic kidney diseases (CKD). The need for efficacious treatment regimen against renal fibrosis can therefore not be overemphasized. Here we show a novel protective role of Bacteroides fragilis (B. fragilis) in renal fibrosis in mice. We demonstrate decreased abundance of B. fragilis in the feces of CKD patients and unilateral ureteral obstruction (UUO) mice. Oral administration of live B. fragilis attenuates renal fibrosis in UUO and adenine mice models. Increased lipopolysaccharide (LPS) levels are decreased after B. fragilis administration. Results of metabolomics and proteomics studies show decreased level of 1,5-anhydroglucitol (1,5-AG), a substrate of SGLT2, which increases after B. fragilis administration via enhancement of renal SGLT2 expression. 1,5-AG is an agonist of TGR5 that attenuates renal fibrosis by inhibiting oxidative stress and inflammation. Madecassoside, a natural product found via in vitro screening promotes B. fragilis growth and remarkably ameliorates renal fibrosis. Our findings reveal the ameliorative role of B. fragilis in renal fibrosis via decreasing LPS and increasing 1,5-AG levels.


DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis.

  • Haruyuki Nakayama-Imaohji‎ et al.
  • PloS one‎
  • 2016‎

Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.


Translocation and survival of Bacteroides fragilis after thermal injury.

  • L Gianotti‎ et al.
  • The Journal of burn care & rehabilitation‎
  • 1995‎

B. fragilis and E. coli were labeled with tritiated (3H) thymidine, and 10(10) of each were given separately by gavage in Balb/c mice immediately before a 20% burn injury was inflicted. Control groups received gavage with 3H-B. fragilis or 3H-E. coli without burn. Four hours after burn or gavage was administered, the animals were killed, and the radionuclide and colony counts were determined in the mesenteric lymph nodes, liver, and spleen. Additional groups of mice receiving gavage (B. fragilis or E. coli) and burn were observed for 10 days to study survival. The results showed that 3H-B. fragilis translocated to a greater extent than 3H-E. coli but that fewer B. fragilis than E. coli survived in tissues. Survival was 86% for animals challenged with B. fragilis versus 53% for animals challenged with E. coli. It is concluded that in this model B. fragilis translocates extensively after burn injury and that survival is closely related to the destruction of translocated bacteria.


Characterization of a Bacteriophage GEC_vB_Bfr_UZM3 Active against Bacteroides fragilis.

  • Nata Bakuradze‎ et al.
  • Viruses‎
  • 2023‎

Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not susceptible to the common antibiotic regimes established for B. fragilis, have been more frequently reported. Bacteriophages (phages) were found to be a successful antibacterial alternative to antibiotic therapy in many cases of multidrug-resistant (MDR) bacterial infections. We have characterized the bacteriophage GEC_vB_Bfr_UZM3 (UZM3), which was used for the treatment of a patient with a chronic osteomyelitis caused by a B. fragilis mixed infection. Studied biological and morphological properties of UZM3 showed that it seems to represent a strictly lytic phage belonging to a siphovirus morphotype. It is characterized by high stability at body temperature and in pH environments for about 6 h. Whole genome sequencing analysis of the phage UZM3 showed that it does not harbor any known virulence genes and can be considered as a potential therapeutic phage to be used against B. fragilis infections.


Strain diversity in the microbiome: Lessons from Bacteroides fragilis.

  • Hannah C Carrow‎ et al.
  • PLoS pathogens‎
  • 2020‎

No abstract available


Safety Evaluation of a Novel Strain of Bacteroides fragilis.

  • Ye Wang‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Commensal non-toxigenic Bacteroides fragilis confers powerful health benefits to the host, and has recently been identified as a promising probiotic candidate. We previously isolated B. fragilis strain ZY-312 and identified it as a novel strain based on 16S rRNA sequencing and morphological analyses. We also determined that ZY-312 displayed desirable probiotic properties, including tolerance to simulated digestive fluid, adherence, and in vitro safety. In this study, we aim to investigate whether ZY-312 meets the safety criteria required for probiotic bacteria through comprehensive and systematic evaluation. Consequently, the fatty acid profile, metabolite production, and biochemical activity of strain ZY-312 were found to closely resemble descriptions of B. fragilis in Bergey's manual. Taxonomic identification of strain ZY-312 based on whole genome sequencing indicated that ZY-312 and ATCC 25285 showed 99.99% similarity. The 33 putative virulence-associated factors identified in ZY-312 mainly encoded structural proteins and proteins with physiological activity, while the lack of bft indicated that ZY-312 was non-toxigenic. In vivo safety was proven in both normal and immune-deficient mice. The 11 identified antibiotic resistance genes were located on the chromosome rather than on a plasmid, ruling out the risk of plasmid-mediated transfer of antibiotic resistance. In vitro, ZY-312 showed resistance to cefepime, kanamycin, and streptomycin. Finally, and notably, ZY-312 exhibited high genetic stability after 100 passages in vitro. This study supplements the foundation work on the safety evaluation of ZY-312, and contributes to the development of the first probiotic representative from the dominant Bacteroidetes phylum.


Evidence of Bacteroides fragilis protection from Bartonella henselae-induced damage.

  • Linda Sommese‎ et al.
  • PloS one‎
  • 2012‎

Bartonella henselae is able to internalize endothelial progenitor cells (EPCs), which are resistant to the infection of other common pathogens. Bacteroides fragilis is a gram-negative anaerobe belonging to the gut microflora. It protects from experimental colitis induced by Helicobacter hepaticus through the polysaccharide A (PSA). The aim of our study was to establish: 1) whether B. fragilis colonization could protect from B. henselae infection; if this event may have beneficial effects on EPCs, vascular system and tissues. Our in vitro results establish for the first time that B. fragilis can internalize EPCs and competes with B. henselae during coinfection. We observed a marked activation of the inflammatory response by Real-time PCR and ELISA in coinfected cells compared to B. henselae-infected cells (63 vs 23 up-regulated genes), and after EPCs infection with mutant B. fragilis ΔPSA (≅90% up-regulated genes) compared to B. fragilis. Interestingly, in a mouse model of coinfection, morphological and ultrastructural analyses by hematoxylin-eosin staining and electron microscopy on murine tissues revealed that damages induced by B. henselae can be prevented in the coinfection with B. fragilis but not with its mutant B. fragilis ΔPSA. Moreover, immunohistochemistry analysis with anti-Bartonella showed that the number of positive cells per field decreased of at least 50% in the liver (20±4 vs 50±8), aorta (5±1 vs 10±2) and spleen (25±3 vs 40±6) sections of mice coinfected compared to mice infected only with B. henselae. This decrease was less evident in the coinfection with ΔPSA strain (35±6 in the liver, 5±1 in the aorta and 30±5 in the spleen). Finally, B. fragilis colonization was also able to restore the EPC decrease observed in mice infected with B. henselae (0.65 vs 0.06 media). Thus, our data establish that B. fragilis colonization is able to prevent B. henselae damages through PSA.


PhoB regulates the survival of Bacteroides fragilis in peritoneal abscesses.

  • Shin Wakimoto‎ et al.
  • PloS one‎
  • 2013‎

In response to phosphate limitation, bacteria employ the Pho regulon, a specific regulatory network for phosphate acquisition. The two-component signal transduction system of PhoRB plays a crucial role in the induction of Pho regulon genes, leading to the adaptation to phosphate starvation. Herein, we identified the PhoRB system in Bacteroides fragilis, a commensal gut bacterium, and evaluated its role in gut colonization and survival in peritoneal abscesses. BF1575 and BF1576 encoded PhoR (sensor histidine kinase) and PhoB (response regulator) in the sequenced B. fragilis strain YCH46, respectively. Transcriptome analysis revealed that deletion of phoB affected the expression of 585 genes (more than 4-fold change) in B. fragilis, which included genes for stress response (chaperons and heat shock proteins), virulence (capsular polysaccharide biosynthesis) and phosphate metabolism. Deletion of phoB reduced the ability of the bacterium to persist in peritoneal abscesses induced by an intra-abdominal challenge of B. fragilis. Furthermore, PhoB was necessary for survival of this anaerobe in peritoneal abscesses but not for in vitro growth in rich media or in intestinal colonization. These results indicate that PhoB plays an important role in the survival of B. fragilis under stressful extraintestinal conditions.


Identification of a collagen type I adhesin of Bacteroides fragilis.

  • Bruna P G V Galvão‎ et al.
  • PloS one‎
  • 2014‎

Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼ 31 and ∼ 34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼ 31 kDa and the ∼ 34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼ 31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein.


Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis.

  • Samin Zamani‎ et al.
  • Gut pathogens‎
  • 2017‎

Ulcerative colitis (UC) as a type of inflammatory bowel disease (IBD), presumed to occur as a consequence of increased immune responses to intestinal microbiota in genetically susceptible individuals. Enterotoxigenic Bacteroides fragilis (ETBF) strains are important intestinal bacteria that can be involved in IBD. The aim of this study was to design a quantitative assay for detection of B. fragilis and ETBF and also to find their association with UC.


The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes.

  • Roibeard F Thornton‎ et al.
  • BMC microbiology‎
  • 2012‎

Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes.


Characterization of a recombinant Bacteroides fragilis sialidase expressed in Escherichia coli.

  • Takaaki Yamamoto‎ et al.
  • Anaerobe‎
  • 2018‎

The human gut commensal Bacteroides fragilis produces sialidases that remove a terminal sialic acid from host-derived polysaccharides. Sialidase is considered to be involved in B. fragilis infection pathology. A native B. fragilis sialidase has been purified and characterized, and was shown to be post-translationally modified by glycosylation. However, the biochemical properties of recombinant B. fragilis sialidase expressed in a heterologous host remain uncharacterized. In this study, we examined the enzymatic properties of the 60-kDa sialidase NanH1 of B. fragilis YCH46, which was prepared as a recombinant protein (rNanH1) in Escherichia coli. In E. coli rNanH1 was expressed as inclusion bodies, which were separated from soluble proteins to allow solubilization of insoluble rNanH1 in a buffer containing 8 M urea and renaturation in refolding buffer containing 100 mM CaCl2 and 50 mM L-arginine. The specific activity of renatured rNanH1 measured using 4-methylumberiferyl-α-D-N-acetyl neuraminic acid as a substrate was 6.16 μmol/min/mg. The optimal pH of rNanH1 ranged from 5.0 to 5.5. The specific activity of rNanH1 was enhanced in the presence of calcium ions. rNanH1 preferentially hydrolyzed the sialyl α2,8 linkage and cleaved sialic acids from mucin and serum proteins (e.g., fetuin and transferrin) but not from α1-acid glycoprotein, which is similar to the previously observed biochemical properties for a native sialidase purified from B. fragilis SBT3182. The results and methods described in this study will be useful for preparing and characterizing recombinant proteins for other B. fragilis sialidase isoenzymes.


Enterotoxigenic and non-enterotoxigenic Bacteroides fragilis from fecal microbiota of children.

  • Aline Ignacio‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2015‎

Enterotoxigenic Bacteroides fragilis (ETBF) is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilis pathogenicity island (BfPAI). Non-enterotoxigenic B. fragilis (NTBF) strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.


Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model.

  • Soonjae Hwang‎ et al.
  • International journal of medical sciences‎
  • 2020‎

The azoxymethane (AOM)/dextran sulfate sodium (DSS) murine model is commonly used to study colitis-associated cancer. The human commensal bacterium, enterotoxigenic Bacteroides fragilis (ETBF) secretes the Bacteroides fragilis toxin (BFT) which is necessary and sufficient to cause colitis. We report that BALB/c mice infected with WT-ETBF and administered three cycles of AOM/DSS developed numerous, large-sized polyps predominantly in the colorectal region. In addition, AOM/DSS-treated BALB/c mice orally inoculated with wild-type nontoxigenic Bacteroides fragilis (WT-NTBF) overexpressing bft (rETBF) developed numerous polyps whereas mice infected with WT-NTBF overexpressing a biologically inactive bft (rNTBF) did not promote polyp formation. Unexpectedly, the combination of AOM+ETBF did not induce polyp formation whereas ETBF+DSS did induce polyp development in a subset of BALB/c mice. In conclusion, WT-ETBF promoted polyp development in AOM/DSS murine model with increased colitis in BALB/c mice. The model described herein provides an experimental platform for understanding ETBF-induced colonic tumorigenesis and studying colorectal cancer in wild-type mice.


A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages.

  • Huimin Deng‎ et al.
  • Scientific reports‎
  • 2016‎

Commensal Bacteroides fragilis possesses immune-regulatory characteristics. Consequently, it has been proposed as a potential novel probiotic because of its therapeutic effects on immune imbalance, mental disorders and inflammatory diseases. Macrophages play a central role in the immune response, developing either a classical-M1 or an alternative-M2 phenotype after stimulation with various signals. The interactions between macrophages and B. fragilis, however, remain to be defined. Here, a new isolate of B. fragilis, ZY-312, was shown to possess admirable properties, including tolerance to simulated gastric fluid, intestinal fluid and ox bile, and good safety (MOI = 100, 200) and adherent ability (MOI = 100) to LoVo cells. Isolate ZY-312 cell lysate promoted phagocytosis of fluorescent microspheres and pathogenic bacteria in bone marrow-derived macrophage (BMDM) cells. Gene expression of IL-12, iNOS and IL-1β in BMDM cells was increased after treatment with ZY-312, indicating the induction of M1 macrophages, consistent with enhanced secretion of NO. Cell surface expression of CD80 and CD86 was also increased. This study is the first to demonstrate that B. fragilis enhances the phagocytic functions of macrophages, polarising them to an M1 phenotype. Our findings provide insight into the close relationship between B. fragilis and the innate immune system.


Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice.

  • Zhengchao Li‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2017‎

Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus.


Extraction and Evaluation of Outer Membrane Vesicles from Two Important Gut Microbiota Members, Bacteroides fragilis and Bacteroides thetaiotaomicron.

  • Sara Ahmadi Badi‎ et al.
  • Cell journal‎
  • 2020‎

The gastrointestinal tract (GI) is colonized by a complex microbial community of gut microbiota. Bacteroides spp. have significant roles in gut microbiota and they host interactions by various mechanisms, including outer membrane vesicle (OMVs) production. In the present study, we extracted and assessed Bacteroides fragilis (B. fragilis) and Bacteroides thetaiotaomicron (B. thetaiotaomicron) OMVs in order to evaluate their possible utility for in vivo studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: