Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,762 papers

Bacterial Adhesion on Femtosecond Laser-Modified Polyethylene.

  • Karin Schwibbert‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced.


Can Superhydrophobic PET Surfaces Prevent Bacterial Adhesion?

  • Tugce Caykara‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Prevention of bacterial adhesion is a way to reduce and/or avoid biofilm formation, thus restraining its associated infections. The development of repellent anti-adhesive surfaces, such as superhydrophobic surfaces, can be a strategy to avoid bacterial adhesion. In this study, a polyethylene terephthalate (PET) film was modified by in situ growth of silica nanoparticles (NPs) to create a rough surface. The surface was further modified with fluorinated carbon chains to increase its hydrophobicity. The modified PET surfaces presented a pronounced superhydrophobic character, showing a water contact angle of 156° and a roughness of 104 nm (a considerable increase comparing with the 69° and 4.8 nm obtained for the untreated PET). Scanning Electron Microscopy was used to evaluate the modified surfaces morphology, further confirming its successful modification with nanoparticles. Additionally, a bacterial adhesion assay using an Escherichia coli expressing YadA, an adhesive protein from Yersinia so-called Yersinia adhesin A, was used to assess the anti-adhesive potential of the modified PET. Contrarily to what was expected, adhesion of E. coli YadA was found to increase on the modified PET surfaces, exhibiting a clear preference for the crevices. This study highlights the role of material micro topography as an important attribute when considering bacterial adhesion.


Mechanical Stabilization of a Bacterial Adhesion Complex.

  • Wenmao Huang‎ et al.
  • Journal of the American Chemical Society‎
  • 2022‎

The adhesions between Gram-positive bacteria and their hosts are exposed to varying magnitudes of tensile forces. Here, using an ultrastable magnetic tweezer-based single-molecule approach, we show the catch-bond kinetics of the prototypical adhesion complex of SD-repeat protein G (SdrG) to a peptide from fibrinogen β (Fgβ) over a physiologically important force range from piconewton (pN) to tens of pN, which was not technologically accessible to previous studies. At 37 °C, the lifetime of the complex exponentially increases from seconds at several pN to ∼1000 s as the force reaches 30 pN, leading to mechanical stabilization of the adhesion. The dissociation transition pathway is determined as the unbinding of a critical β-strand peptide ("latch" strand of SdrG that secures the entire adhesion complex) away from its binding cleft, leading to the dissociation of the Fgβ ligand. Similar mechanical stabilization behavior is also observed in several homologous adhesions, suggesting the generality of catch-bond kinetics in such bacterial adhesions. We reason that such mechanical stabilization confers multiple advantages in the pathogenesis and adaptation of bacteria.


Anti-Bacterial Adhesion Activity of Tropical Microalgae Extracts.

  • Claudia Zea-Obando‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The evolution of regulations concerning biocidal products aimed towards an increased protection of the environment (e.g., EU Regulation No 528/2012) requires the development of new non-toxic anti-fouling (AF) systems. As the marine environment is an important source of inspiration, such AF systems inhibiting the adhesion of organisms without any toxicity could be based on molecules of natural origin. In this context, the antibiofilm potential of tropical microalgal extracts was investigated. The tropics are particularly interesting in terms of solar energy and temperatures which provide a wide marine diversity and a high production of microalgae. Twenty microalgal strains isolated from the Indian Ocean were studied. Their extracts were characterized in terms of global chemical composition by high resolution magic angle spinning (HR-MAS) and nuclear magnetic resonance (NMR) spectroscopy, toxicity against marine bacteria (viability and growth) and anti-adhesion effect. The different observations made by confocal laser scanning microscopy (CLSM) showed a significant activity of three extracts from Dinoflagellate strains against the settlement of selected marine bacteria without any toxicity at a concentration of 50 μg/mL. The Symbiodinium sp. (P-78) extract inhibited the adhesion of Bacillus sp. 4J6 (Atlantic Ocean), Shewanella sp. MVV1 (Indian Ocean) and Pseudoalteromonas lipolytica TC8 (Mediterranean Ocean) at 60, 76 and 52%, respectively. These results underlined the potential of using microalgal extracts to repel fouling organisms.


Influence of Polyelectrolyte Multilayer Properties on Bacterial Adhesion Capacity.

  • Davor Kovačević‎ et al.
  • Polymers‎
  • 2016‎

Bacterial adhesion can be controlled by different material surface properties, such as surface charge, on which we concentrate in our study. We use a silica surface on which poly(allylamine hydrochloride)/sodium poly(4-styrenesulfonate) (PAH/PSS) polyelectrolyte multilayers were formed. The corresponding surface roughness and hydrophobicity were determined by atomic force microscopy and tensiometry. The surface charge was examined by the zeta potential measurements of silica particles covered with polyelectrolyte multilayers, whereby ionic strength and polyelectrolyte concentrations significantly influenced the build-up process. For adhesion experiments, we used the bacterium Pseudomonas aeruginosa. The extent of adhered bacteria on the surface was determined by scanning electron microscopy. The results showed that the extent of adhered bacteria mostly depends on the type of terminating polyelectrolyte layer, since relatively low differences in surface roughness and hydrophobicity were obtained. In the case of polyelectrolyte multilayers terminating with a positively charged layer, bacterial adhesion was more pronounced than in the case when the polyelectrolyte layer was negatively charged.


Application of sub-micrometer vibrations to mitigate bacterial adhesion.

  • Will R Paces‎ et al.
  • Journal of functional biomaterials‎
  • 2014‎

As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.


Introducing shear stress in the study of bacterial adhesion.

  • Magali Soyer‎ et al.
  • Journal of visualized experiments : JoVE‎
  • 2011‎

During bacterial infections a sequence of interactions occur between the pathogen and its host. Bacterial adhesion to the host cell surface is often the initial and determining step of the pathogenesis. Although experimentally adhesion is mostly studied in static conditions adhesion actually takes place in the presence of flowing liquid. First encounters between bacteria and their host often occur at the mucosal level, mouth, lung, gut, eye, etc. where mucus flows along the surface of epithelial cells. Later in infection, pathogens occasionally access the blood circulation causing life-threatening illnesses such as septicemia, sepsis and meningitis. A defining feature of these infections is the ability of these pathogens to interact with endothelial cells in presence of circulating blood. The presence of flowing liquid, mucus or blood for instance, determines adhesion because it generates a mechanical force on the pathogen. To characterize the effect of flowing liquid one usually refers to the notion of shear stress, which is the tangential force exerted per unit area by a fluid moving near a stationary wall, expressed in dynes/cm(2). Intensities of shear stress vary widely according to the different vessels type, size, organ, location etc. (0-100 dynes/cm(2)). Circulation in capillaries can reach very low shear stress values and even temporarily stop during periods ranging between a few seconds to several minutes (1). On the other end of the spectrum shear stress in arterioles can reach 100 dynes/cm(2)(2). The impact of shear stress on different biological processes has been clearly demonstrated as for instance during the interaction of leukocytes with the endothelium (3). To take into account this mechanical parameter in the process of bacterial adhesion we took advantage of an experimental procedure based on the use of a disposable flow chamber (4). Host cells are grown in the flow chamber and fluorescent bacteria are introduced in the flow controlled by a syringe pump. We initially focused our investigations on the bacterial pathogen Neisseria meningitidis, a Gram-negative bacterium responsible for septicemia and meningitis. The procedure described here allowed us to study the impact of shear stress on the ability of the bacteria to: adhere to cells (1), to proliferate on the cell surface (5)and to detach to colonize new sites (6) (Figure 1). Complementary technical information can be found in reference 7. Shear stress values presented here were chosen based on our previous experience(1) and to represent values found in the literature. The protocol should be applicable to a wide range of pathogens with specific adjustments depending on the objectives of the study.


Initial Bacterial Adhesion and Biofilm Formation on Aligner Materials.

  • Sibel Tektas‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

The present study aims to assess the initial bacterial adhesion and biofilm formation on different aligner materials. A total of four different aligner materials, CA-medium (CAM), copolyester (COP), Duran (DUR), Erkodur (ERK), were tested. Stimulated human saliva was obtained from six healthy volunteers. Salivary bacteria were harvested by centrifugation, and 1 mL of the salivary suspension was injected onto each sample surface for 2 h and 3 days, respectively. The samples were then washed twice with 5 mL 0.9% NaCl solution, and non-adherent bacteria were removed. The adherent microorganisms were dislodged from the sample surfaces after ultrasonication for 4 min in 1 mL 0.9% NaCl on ice. After the incubation of the adherent salivary bacteria under both aerobic and anaerobic conditions on Columbia blood agar plates at 37 °C and 5% CO2 and in anaerobic jars overnight, several dilutions thereof were used for the determination of CFUs. This protocol was applied three times, obtaining an average of nine independent measurements for each material group. Overall, the differences between the tested aligner materials as well as between the materials and controls were not of statistical significance (p > 0.05). Regarding initial bacterial attachment and biofilm formation, the tested aligner materials are comparable to enamel and metal orthodontic brackets and can be therefore considered for clinical use. The four tested aligner materials CAM, COP, DUR, ERK showed no significant differences in initial microbial attachment and biofilm formation of aerobic and anaerobic species compared to enamel and conventional brackets.


Geometric constraint-triggered collagen expression mediates bacterial-host adhesion.

  • Yuting Feng‎ et al.
  • Nature communications‎
  • 2023‎

Cells living in geometrically confined microenvironments are ubiquitous in various physiological processes, e.g., wound closure. However, it remains unclear whether and how spatially geometric constraints on host cells regulate bacteria-host interactions. Here, we reveal that interactions between bacteria and spatially constrained cell monolayers exhibit strong spatial heterogeneity, and that bacteria tend to adhere to these cells near the outer edges of confined monolayers. The bacterial adhesion force near the edges of the micropatterned monolayers is up to 75 nN, which is ~3 times higher than that at the centers, depending on the underlying substrate rigidities. Single-cell RNA sequencing experiments indicate that spatially heterogeneous expression of collagen IV with significant edge effects is responsible for the location-dependent bacterial adhesion. Finally, we show that collagen IV inhibitors can potentially be utilized as adjuvants to reduce bacterial adhesion and thus markedly enhance the efficacy of antibiotics, as demonstrated in animal experiments.


Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces.

  • Mirjam Kozmos‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The aim of this study was to investigate and understand bacterial adhesion to different dental material surfaces like amalgam, Chromasit, an Co-Cr alloy, an IPS InLine ceramic, yttrium stabilized tetragonal polycrystalline zirconia (TPZ), a resin-based composite, an Au-Pt alloy, and a tooth. For all materials, the surface roughness was assessed by profilometry, the surface hydrophobicity was determined by tensiometry, and the zeta potential was measured by electrokinetic phenomena. The arithmetic average roughness was the lowest for the TPZ ceramic (Ra = 0.23 µm ± 0.02 µm), while the highest value was observed for the Au-Pt alloy (Ra = 0.356 µm ± 0.075 µm). The hydrophobicity was the lowest on the TPZ ceramic and the highest on the Co-Cr alloy. All measured streaming potentials were negative. The most important cause of tooth caries is the bacterium Streptococcus mutans, which was chosen for this study. The bacterial adhesion to all material surfaces was determined by scanning electron microscopy. We showed that the lowest bacterial extent was on the amalgam, whereas the greatest extent was on tooth surfaces. In general, measurements showed that surface properties like roughness, hydrophobicity and charge have a significant influence on bacterial adhesion extent. Therefore, dental material development should focus on improving surface characteristics to reduce the risk of secondary caries.


Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion.

  • Márcia R Vagos‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

Different studies have shown that the incorporation of carbon nanotubes (CNTs) into poly(dimethylsiloxane) (PDMS) enables the production of composite materials with enhanced properties, which can find important applications in the biomedical field. In the present work, CNT/PDMS composite materials have been prepared to evaluate the effects of pristine and chemically functionalized CNT incorporation into PDMS on the composite's thermal, electrical, and surface properties on bacterial adhesion in dynamic conditions. Initial bacterial adhesion was studied using a parallel-plate flow chamber assay performed in conditions prevailing in urinary tract devices (catheters and stents) using Escherichia coli as a model organism and PDMS as a control due to its relevance in these applications. The results indicated that the introduction of the CNTs in the PDMS matrix yielded, in general, less bacterial adhesion than the PDMS alone and that the reduction could be dependent on the surface chemistry of CNTs, with less adhesion obtained on the composites with pristine rather than functionalized CNTs. It was also shown CNT pre-treatment and incorporation by different methods affected the electrical properties of the composites when compared to PDMS. Composites enabling a 60% reduction in cell adhesion were obtained by CNT treatment by ball-milling, whereas an increase in electrical conductivity of seven orders of magnitude was obtained after solvent-mediated incorporation. The results suggest even at low CNT loading values (1%), these treatments may be beneficial for the production of CNT composites with application in biomedical devices for the urinary tract and for other applications where electrical conductance is required.


Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation.

  • Rattiyaphorn Pakkulnan‎ et al.
  • PloS one‎
  • 2019‎

The biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B. pseudomallei during biofilm formation using DNase treatment. The extent of biofilm formation and quantity of eDNA were assessed by crystal-violet staining and fluorescent dye-based quantification, respectively, and visualized by confocal laser scanning microscopy (CLSM). Variation in B. pseudomallei biofilm formation and eDNA quantity was demonstrated among isolates. CLSM images of biofilms stained with FITC-ConA (biofilm) and TOTO-3 (eDNA) revealed the localization of eDNA in the biofilm matrix. A positive correlation of biofilm biomass with quantity of eDNA during the 2-day biofilm-formation observation period was found. The increasing eDNA quantity over time, despite constant living/dead ratios of bacterial cells during the experiment suggests that eDNA is delivered from living bacterial cells. CLSM images demonstrated that depletion of eDNA by DNase I significantly lessened bacterial attachment (if DNase added at 0 h) and biofilm developing stages (if added at 24 h) but had no effect on mature biofilm (if added at 45 h). Collectively, our results reveal that eDNA is released from living B. pseudomallei and is correlated with biofilm formation. It was also apparent that eDNA is essential during bacterial cell attachment and biofilm-forming steps. The depletion of eDNA by DNase may provide an option for the prevention or dispersal of B. pseudomallei biofilm.


Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds.

  • Yoo Jin Oh‎ et al.
  • Scientific reports‎
  • 2016‎

Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.


Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion.

  • Minchen Mu‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2023‎

Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.


N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation.

  • Fabíola Costa‎ et al.
  • Scientific reports‎
  • 2017‎

N-acetyl cysteine (NAC) is an FDA-approved drug clinically applied on a broad range of pathologies. Further research has been conducted with this drug to benefit from its antimicrobial activity potential. However, NAC has a very short half-life and therefore strategies that accomplish high local concentrations would be beneficial. In this study, covalent immobilization of NAC was performed, in order to obtain long-lasting high local concentration of the drug onto a chitosan(Ch)-derived implant-related coating. For the development of NAC-functionalized Ch films, water-based carbodiimide chemistry was applied to avoid the use of toxic organic solvents. Here we report the optimization steps performed to immobilize NAC onto the surface of pre-prepared Ch coatings, to ensure full exposure of NAC. Surface characterization using ellipsometry, water contact angle measurements and X-ray photoelectron spectroscopy (XPS), demonstrated the success of NAC immobilization at 4 mg/mL. Quartz crystal microbalance with dissipation (QCM-D) demonstrated that surface immobilized NAC decreases protein adsorption to Ch coatings. Biological studies confirmed that immobilized NAC4 avoids methicillin-resistant Staphylococcus aureus adhesion to Ch coating, impairing biofilm formation, without inducing cytotoxic effects. This is particularly interesting towards further developments as a prevention coating.


A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

  • Aretha Fiebig‎ et al.
  • PLoS genetics‎
  • 2014‎

In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.


High Potential of Bacterial Adhesion on Block Bone Graft Materials.

  • Themistoklis Nisyrios‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

Bone graft infections represent a challenge in daily clinics, resulting in increased patient discomfort and graft removal. The aim of this study was to investigate the initial adhesion of five representative pathogens on three different block bone graft materials (xenogeneic, alloplastic and allogeneic) and to assess if chlorhexidine (CHX) can effectively control the initial bacterial adhesion. Three different block bone grafting materials (Tutobone®, Endobon® and human spongiosa) were incubated with Escherichia coli, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Pseudomonas aeruginosa in the presence or absence of 0.2% CHX solution. Bacterial adhesion was assessed by the direct counting of the colony-forming units (CFUs) and visualized by scanning electron microscopy (SEM). Overall, the selected bacterial species adhered successfully to all tested bone replacement scaffolds, which showed similar bacterial counts. The lg CFU values ranged from 5.29 ± 0.14 to 5.48 ± 0.72 for E. coli, from 4.37 ± 0.62 to 5.02 ± 0.48 for S. aureus, from 4.92 ± 0.34 to 4.95 ± 0.21 for S. mutans, from 4.97 ± 0.40 to 5.22 ± 0.13 for E. faecalis and from 4.23 ± 0.54 to 4.58 ± 0.26 for P. aeruginosa. CHX did not interfere with initial microbial adhesion, and yet it killed all adhered bacterial cells. Thus, CHX can be used to prevent subsequent biofilm infections.


Lianhuaqingwen capsule inhibits influenza-induced bacterial adhesion to respiratory epithelial cells through down-regulation of cell adhesion molecules.

  • Qiuling Du‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Influenza virus infection is widely believed to cause mild symptoms, but can lead to high mortality and severe disease complicated by secondary bacterial pneumonia. Traditional Chinese medicine (TCM) has been proposed as a promising agent to treat respiratory viral infections. A herbal formula Lianhuaqingwen capsule (LHQW) comprising two prescriptions: Maxing Shigan decoction and Yinqiao San, has been used clinically to treat respiratory infection with immune regulatory effects. However, little is known about the capacity of LHQW against influenza-induced secondary bacterial pneumonia.


Effect of Polymer Demixed Nanotopographies on Bacterial Adhesion and Biofilm Formation.

  • George Fleming‎ et al.
  • Polymers‎
  • 2019‎

As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies. In the PS/PCL system, PS segregates to the air-polymer interface, with the lower solubility PCL preferring the substrate-polymer interface. In the PS/PMMA and PCL/PMMA systems, PMMA prefers the air-polymer interface due to its greater solubility and lower surface energy. The anti-adhesion efficacy of the demixed films were tested against Pseudomonas aeruginosa (PA14). PS/PCL and PCL/PMMA demixed films showed a significant reduction in cell counts adhered on their surfaces compared to pure polymer control films, while no reduction was observed in the counts adhered on PS/PMMA demixed films. While the specific morphology did not affect the adhesion, a relationship between bacterial cell and topographical surface feature size was apparent. If the surface feature was smaller than the cell, then an anti-adhesion effect was observed; if the surface feature was larger than the cell, then the bacteria preferred to adhere.


Bacterial Adhesion on Dental Polymers as a Function of Manufacturing Techniques.

  • Jörg Bächle‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2023‎

The microbiological behavior of dental polymer materials is crucial to secure the clinical success of dental restorations. Here, the manufacturing process and the machining can play a decisive role. This study investigated the bacterial adhesion on dental polymers as a function of manufacturing techniques (additive/subtractive) and different polishing protocols. Specimens were made from polyaryletherketone (PEEK, PEKK, and AKP), resin-based CAD/CAM materials (composite and PMMA), and printed methacrylate (MA)-based materials. Surface roughness (Rz; Ra) was determined using a laser scanning microscope, and SFE/contact angles were measured using the sessile drop method. After salivary pellicle formation, in vitro biofilm formation was initiated by exposing the specimens to suspensions of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). Adherent bacteria were quantified using a fluorometric assay. One-way ANOVA analysis found significant influences (p < 0.001) for the individual parameters (treatment and material) and their combinations for both types of bacteria. Stronger polishing led to significantly (p < 0.001) less adhesion of S. sanguinis (Pearson correlation PC = -0.240) and S. mutans (PC = -0.206). A highly significant (p = 0.010, PC = 0.135) correlation between S. sanguinis adhesion and Rz was identified. Post hoc analysis revealed significant higher bacterial adhesion for vertically printed MA specimens compared to horizontally printed specimens. Furthermore, significant higher adhesion of S. sanguinis on pressed PEEK was revealed comparing to the other manufacturing methods (milling, injection molding, and 3D printing). The milled PAEK samples showed similar bacterial adhesion. In general, the resin-based materials, composites, and PAEKs showed different bacterial adhesion. Fabrication methods were shown to play a critical role; the pressed PEEK showed the highest initial accumulations. Horizontal DLP fabrication reduced bacterial adhesion. Roughness < 10 µm or polishing appear to be essential for reducing bacterial adhesion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: